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Abstract

Background: Intensive robot-assisted training of the upper limb after stroke can reduce motor impairment, even at the
chronic stage. However, the effectiveness of practice for recovery depends on the selection of the practised movements.
We hypothesized that rehabilitation can be optimized by selecting the movements to be practiced based on the trainee’s
performance profile.

Methods:We present a novel principle (‘steepest gradients’) for performance-based selection of movements.
The principle is based on mapping motor performance across a workspace and then selecting movements
located at regions of the steepest transition between better and worse performance.
To assess the benefit of this principle we compared the effect of 15 sessions of robot-assisted reaching training on
upper-limb motor impairment, between two groups of people who have moderate-to-severe chronic upper-limb
hemiparesis due to stroke. The test group (N = 7) received steepest gradients-based training, iteratively selected
according to the steepest gradients principle with weekly remapping, whereas the control group (N = 9) received a
standard “centre-out” reaching training. Training intensity was identical.

Results: Both groups showed improvement in Fugl-Meyer upper-extremity scores (the primary outcome measure).
Moreover, the test group showed significantly greater improvement (twofold) compared to control. The score
remained elevated, on average, for at least 4 weeks although the additional benefit of the steepest-gradients -based
training diminished relative to control.

Conclusions: This study provides a proof of concept for the superior benefit of performance-based selection of
practiced movements in reducing upper-limb motor impairment due to stroke. This added benefit was most
evident in the short term, suggesting that performance-based steepest-gradients training may be effective in
increasing the rate of initial phase of practice-based recovery; we discuss how long-term retention may also be
improved.
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Background
Upper-limb (UL) motor impairment is a common out-
come of stroke that can severely hamper basic daily living
activities [1–3]. Training-based therapy can promote re-
covery with the outcome depending on the intensity and
duration of the intervention [4–6]. Robot-assisted training
allows intense practice without increasing the individual’s
dependence on a therapist and can improve clinical scores
of UL motor capacity [7–9]. However, the effects are
usually small and provide limited improvement in motor
function, especially in more severe hemiparesis [6, 7, 10–
12]. Identifying training methods that can boost outcome
is thus vital. Considering the extent of effort and sophisti-
cation invested in robot-assisted technology (e.g. [13, 14])
perhaps it is time to focus on how to optimise its utility
(in terms of training principles). Recent attempts have fo-
cussed on creating training scenarios which are more en-
gaging or which simulate daily living activities. However,
the evidence for the added benefit of this approach is
mixed [15]. Another approach is to individualize the diffi-
culty of the practised task (e.g. [16, 17]). This is based on
the idea that motor improvement depends on the ability
to ‘make sense’ of information related to performance
[18], and postulates that matching the challenge (diffi-
culty) level of the training task to the current ability of the
trainee would optimise motor learning [19]. Individualiz-
ing task difficulty is commonly achieved by adjusting the
parameters controlling task demands (e.g. movement
speed or distance; or amount of assistance) across a
pre-selected standard set of movements, to match the
ability of the individual. Yet, so far there is little evidence
for the added benefit of this approach for UL motor re-
covery. Hence, individually adjusting the task difficulty
level might –by itself - not suffice for boosting UL re-
habilitation outcome.
We hypothesised instead that appropriate selection of

the practiced movements – in terms of the muscle co-
ordination patterns - is a key for improving motor re-
covery. UL hemiparesis can affect various aspects of
control. Thus, different motor impairments may benefit
from different training movements. For example, train-
ing with movements involving mainly patterns of intact
muscle coordination is unlikely to contribute much to
improve other impaired movement patterns, regardless
of the task difficulty level. Similarly, training that focuses
only on movements that involve severely impaired
muscle control may contribute little, even if the task can
be performed by compensatory movements. Hence, to
be optimally effective, individualized training may need
to be expressed, not only by individually adjusting the
level of difficulty of the task, but also in selecting tasks
which are relevant for recovery. Little has been done to
explore this possibility (for some attempts see [20, 21]).
Here we present a novel method for performance-based

selection of the set of movement tasks for robot-assisted
training. The method depends on the availability of a
motor performance “map” that profiles performance
across a workspace. Movements are selected within
intermediate levels of performance, based on the
variation of performance across the map. Specifically, we
predicted that optimal reduction of UL hemiparesis
would be achieved by training with movements located
at points on the map of steep transition (steep gradient)
from high to low performance (Fig. 1), thus promoting
the cascade of generalisation of motor improvement.
Improved performance of movements at these steep
gradient locations on the performance map would
steer improvement in neighbouring, but more im-
paired regions, and encourage recovery. Here, we
present evidence supporting this hypothesis.
To apply our method we first developed a novel principle

of mapping of robot-assisted reaching performance across
two dimensions of target location and movement direction
[22], informing us about postural and movement-related
aspects of motor control, respectively—key factors in the
planning and execution of reaching movements [23–25].
The performance maps then served to select movement
sets for training, based on our “steepest gradients” principle.
To test our hypothesis–namely, training based on that
principle would lead to superior recovery–we compared
the outcome of 15 sessions of robot-assisted training be-
tween two groups of people who have severe-to-moderate
chronic UL hemiparesis due to stroke, differing only in the
selection of trained movement. In one group the selection
was based on the steepest performance gradients principle
(updated weekly) whereas the other group was trained with
a fixed set of centre-out reaching movements regardless of
participant’s performance profile, as commonly used in
robot-assisted UL therapy [26].

Methods
Participants
We studied 16 adult individuals with chronic
moderate-to-severe UL hemiparesis (Table 1).
The study was conducted at the University of Birmingham

(UK; the School of Psychology and Birmingham University
Imaging Centre). Candidate participants were re-
cruited via advertisements and visits to stroke clubs
around Birmingham, as well as by contacts with po-
tential recruits involved in other unrelated research at
the University of Birmingham, who had provided
written consent to be contacted for other projects.
Screening and initial (baseline) clinical assessments

were conducted in two initial sessions by an experienced
therapist. Inclusion criteria included: 1) aged 18+ years,
2) cortical or capsular stroke > 6 months before partici-
pation and no evidence for another stroke in the last 6
month, 3) Fugl-Meyer assessment (FMA-UE) [27] score
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Fig. 1 Illustrative sketch of the principle of selection of trained movements, based on the steepest gradients in a hypothetical motor performance
profile (e.g. reaching aiming; vertical axis) measured across some particular task parameter (e.g. movement direction; horizontal axis); for simplicity,
we show here a single dimension. The selected movements (grey horizontal bars) correspond to the regions with the steepest performance
gradients, indicated by dashed ellipses. This movement selection principle can be applied where movement tasks can be defined by one or more
continuous parameters, i.e. in a 1D, 2D, or higher dimensional map as long as the derivative of performance can be calculated. In this study we
applied this principle on two measures of reaching performance (ability to move and ability to aim) each measured across two dimensions of the
task (target location and movement direction)

Table 1 Participant details
participant age sex hand years

since
last
stroke

Brain Lesion locations FMA-UE
(baseline)dominant affected

C1 65 F R R 2.5 L BG, L thal 11

C2 68 M R R 7 L front-par, L temp, L insula, L BG 40.5

C3 59 M R L 4 R par, R front 9.5

C4 43 F R L 2 R front, R par-temp, R hipp atrophy 47

C5 48 F R R 4 L hemispherea 27

C6 20 F R R 2.5 L hemisphere (very large lesion)a 16

C7 75 M R L 10.5 R thal, R BG 20

C8 65 M R R 1 bilateral BG, bilateral thal, EnV 17

C9 58 M R R 3.5 L front-par (large lesion), L occ, L thal, L BG,
EnV (especially L)

18

T1 65 F R R 3 L BG, L hipp atrophy 26.5

T2 60 M L R 3 L front-par, L insula, L temp 38

T3 51 M R L 3 R hemisphere lesiona 7.5

T4 57 M R R 9 L front-temp, L thal, L BG 14

T5 58 M R R 1 L thal, L CC (anterior), WM atrophy 12

T6 60 M L L 2.5 R BG, R thal, R EnV, R temp 10.5

T7 79 F R R 4.5 L BG, L thal, L EnV, L insula atrophy 20.5

C1–9: control; T1–7: test. Here FMA-UE score is the average across two baseline assessments. Anatomical abbreviations: BG basal ganglia, CC corpus callosum, EnV enlarged
ventricles, front frontal cortex, hipp hippocampus, occ occipital cortex, par parietal cortex, temp temporal cortex, thal thalamus,WM white matter
aBased on family doctor’s notes
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within 5 and 50 points, with no more than 5-point dif-
ference on repeat testing at two weeks interval, 4) pre-
served vision across the visual field, allowing detection
of all the stimuli displayed during the robot-assisted
motor tasks, 5) ability to maintain balance when seated,
6) preserved basic cognitive function including under-
standing instruction as assessed by Mini Mental State
Examination, 7) availability during the full period of
the study.
Exclusion criteria included 1) prolonged pain in the af-

fected upper limb or during movement (assessed using the
10-point Likert Pain Scale) or injury in the hemiparetic
hand/arm, 2) severe spasticity involving elbow/shoulder
movements ≥3 in Modified Ashworth Scale for any tested
elbow/shoulder posture, 3) undergoing active rehabilitation
(e.g. physiotherapy, occupational therapy etc.) during the
study period, 4) cerebellar lesion assessed by MRI or by
clinical report as provided by the participant.
Seventeen out of the 36 screened candidate partici-

pants were found eligible to take part in the study. One
participant withdrew from the study before completing
all the sessions and hence his data were excluded from
this report.
All participants received detailed information about

the study, which was approved by University of Birming-
ham local ethics committee, and gave informed consent
(signed by themselves or by a trusted representative).
Three participants were not MRI-eligible and instead

provided a copy of their clinical report about the le-
sioned hemisphere.

Design, materials, and procedures
The study had a parallel design. Following screening and
initial clinical assessment (CA) 17 participants were ini-
tially allocated to a control (N = 9) or test (N = 8) group,
through a stratification algorithm aiming to balance age,
UL impairment level (FMA-UE score), and handedness
relative to the affected limb. One participant in the test
group discontinued his participation, leaving the final
test group N = 7.
Specifically, allocation to either test or control study

group was done using stratification (a dynamic
minimization protocol; conducted and updated using
an Excel routine), balancing impairment (2 levels:
FMA-UE score more or less than 25), age (two levels:
younger or older than 60) and handedness with re-
spect to the affected limb (2 levels: dominant or
non-dominant) between the groups. Each participant,
when recruited, was allocated to the group which had
more stratification factors containing fewer partici-
pants with the same stratification as the incoming
participant. If all three factors were balanced be-
tween the groups, allocation was based on a pre-set
alternating list.

For both groups, the study period was divided into 3
phases (Fig. 2a). The initial baseline phase consisted of
five sessions lasting 1–1.5 h: two identical CAs, a parameter
tuning session, a performance mapping assessment and an
MRI brain scan (for MR-eligible individuals). The main
training phase comprised 4 sessions per week for 5 con-
secutive weeks. In each week, 3 training sessions were
followed by a mapping session. Data from the final map-
ping session of the training phase, and from a following CA
(conducted within 2–4 days post-training), served to evalu-
ate post-training outcomes. A final CA and mapping ses-
sion were run 4 weeks later (follow-up phase). The two
groups differed only in the selection of movement condi-
tions during training sessions; all other session types were
identical in both groups (see Fig. 3 and below).

Clinical assessments (CA)
The therapist who conducted the CAs and screening
was blinded about the participant’s group allocation and
ongoing test results. Sensorimotor assessment included
the UL FMA-UE [27], the MRC Muscle Power scale
(MRC-MPS) [28], the Modified Ashworth Scale (MAS;
elbow flexors) [29] and the new Motor Assessment Scale
– UL items (nMAS-UE, items 6–8) [30]. Activities of
daily living were assessed using the Barthel index (BI)
[31]. The primary outcome measure was the FMA-UE
score, as it has been reported to be sensitive to
robot-assisted UL therapy (e.g. [16]). The other clinical
assessments served as secondary clinical outcome
measures.
Baseline CA scores were computed as the mean clin-

ical scores across the two baseline tests.

Robot-assisted sessions
For both groups, during all the robot-assisted task ses-
sions (tuning, mapping and training sessions) the partici-
pants sat in front of a horizontal display holding the
handle of a robotic manipulandum (vBot [32]; Fig. 2b)
and attempted to perform 5 cm point-to-point reaching
movements within an individually-set allotted time. As-
sistive and guiding forces were provided as needed by
the vBot throughout the movement, using an algorithm
adapted from [16] and described elsewhere [22]. Briefly,
the assisting force (Assist) was provided in the direction
towards the target and depended on the momentary
speed towards the target relative to the speed expected
in a minimum jerk trajectory [33], at the particular time
point given the allotted movement time (which was set
individually). The guiding force (Guide) impedes
deviation from moving towards the target at each mo-
ment and depended on the amount of momentary devi-
ation. Each session started with 24 initial practice trials.
During tuning, the allotted movement time and stiff-

ness of the vBot’s guiding force were individually
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adjusted based on a revised version of [16] and the final
adjusted values were then fixed for each participant
throughout the rest of the robot-assisted sessions [22].
In mapping (and tuning) sessions, performance was

assessed across 64 planar reaching movements, defined by

all combinations of 8 targets, located equidistant 5 cm away
from the workspace’s centre, and 8 target-related start loca-
tions, equidistant 5 cm around each target (Fig. 2c). In each
mapping session, these 8-by-8 conditions were repeated 5
times in pseudo-random order.

A

B C

Fig. 2 Experimental design. a. The sessions in each of the 3 participation phases are shown, with different colours indicating different session
type. CA: clinical assessment; Map: mapping session. The first CA also served for screening. b. Schematic description of the experimental setting
(top view; adapted from [32]). The participant held the robot handle, with grip ensured by a glove (Active Hands Co Ltd) and arm supported
against gravity (SaeboMass, Saebo Inc.; not shown), which—at the beginning of each trial – was gently moved by the robot to a start position
(white on-screen disc). Next, a target appeared on the horizontal display (blue on-screen disc; here shown black) and the participant tried to
reach the target within the allotted time as accurately as possible, with the robot providing assisting and guiding forces as needed at each
moment. Hand position was indicated on-screen by a red disc (not shown here). The horizontal display occluded the hand and the
manipulandum from vision. Participants wore a harness to restrict trunk movement, keeping their forehead on a padded headrest attached to
the workstation frame. The assistive force (Assist) promoted slower-than-allowed movements and also impeded very fast rebound-like movements
characterising high elbow flexor muscle tone. The guiding force (Guide) impeded lateral deviation from a straight path towards the target. An
animated ‘explosion’ was presented at the end of each trial with its final radius indicating reach accuracy (not shown). Also, during training
sessions a 4-bar histogram summary, shown after each block (84 trials), informed the participant about his or her ability to initiate movements,
move, aim and reach the target (adopted from [16]). c. The reaching workspace used for mapping performance. The locations of the 8 targets
are indicated by small open circles and are specified by angular coordinates relative to the centre. An example of the hand located at the 90o

target is shown. Participants made 5 cm reaches to each target from 8 start locations (indicated, for the example target, by small black dots and
arrows), which were also specified in angular coordinates relative to the particular target. Note that the start coordinates therefore correspond to
intended movement direction. The dashed circle indicates the extent of the mapped workspace, centred 24 cm in front of the headrest
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Details of the procedure of mapping performance
across movements can be found elsewhere [22].
Briefly, the mapping was based on performance mea-
sures (PM) adopted from [16] of ability to move
(PM2) and to aim towards the target (PM3) relative

to individually-set performance criterion. Negative PM
values indicate impaired performance and positive
values indicates excelling the individually-set expected
performance. Specifically, PM2 is the sum of a move-
ment ability parameter pm2, computed across the

A

C

B

D

Fig. 3 Performance mapping and selection of movements. a. The workspace for mapping motor performance is defined by all possible targets
angles ϑ (targets 5 cm away from the workspace centre; blue dashed line) and all the possible start angles σ from each target (red dashed line,
indicating the possible start locations relative to the target shown as a blue disc). Note that start locations define movement directions. b. An
example of a 32 × 32 ϑ-by-σ performance map (interpolated and smoothed from the 8 × 8 performance metric PM3, indicated as black dots).
Reddish colours indicate good performance, bluish colours poor performance. Note that opposite edges of the map are in fact contiguous, due
to the circularity of angular data (0o = 360o). The small white square, bottom left of map, indicates the coordinates of the start-to-target
movement example shown in panel a (ϑ = 135, σ = 45; red Arrow). c. Example of performance-based selection of practiced movements (‘+’)
according to the steepest gradients principle. The example selection shown was based on the PM3 map from a representative patient (also
shown in panel b). Selected movements are located at regions where performance changes rapidly from higher to lower levels (relative to the
participant’s overall performance). The graph across the top depicts the performance gradient measured at target direction of 202.5o; as indicated
by the white line on the map) and the corresponding selected movements (+). Note that selection is based on the vector sum of the local
gradients across both map dimensions. Note also that the training sets for the study consisted of weighted selections from the PM2 and PM3
maps (see text and [16] for more details). d. The coordinates of centre-out movements which were selected for the control group (‘+’)
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individually-allotted movement time. If at time point
i, movement towards the target is slower than ex-
pected, or is abnormally fast, pm2(i) is negative and
is equal to the robot power applied in the direction
of the target:
pm2ðiÞ ¼ FyðiÞ _yðiÞ, in the direction towards the target,

axis y, where Fy is the Assist force, and _y is velocity.
Conversely, at time points when the movement is at -

or faster than - the expected speed pm2(i) is positive
and reflects the difference between the expected and ac-
tual movement displacement along the trajectory:
pm2(i) = y(i) − ym. j(i); where ym. j(i) is the expected

progress towards the target at time point i, given an al-
lotted movement time and assuming a minimum jerk
trajectory [33].
PM3 is proportional to the difference between

root-mean-square (rms) deviation and the tolerated rms
deviation, xrms, (individually set), across all movement
time points i, and normal to direction towards the target
(axis x):

PM3∝xrms−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
xðiÞ2

r

PM2 and PM3 were separately mapped in an angular
coordinate framework, specifying target location and
relative start location (namely, intended direction; Fig. 3a).
That 8 × 8 grid was then interpolated (using a
Gaussian-process regression [34]) to create a 32 × 32 map
(Fig. 3b). For the test group, the performance maps from
each mapping session were the basis for selection of train-
ing movements for the following three training sessions
(Fig. 2a and see below).
Each training session involved 504 reaches. The con-

trol group was trained with 5 cm centre-out reaches to
one of 32 equidistant targets, arrayed around the central
start position (pseudo-randomised; these define a con-
sistent set of movements, regardless of the performance
map; Fig. 3d). For the test group, the training move-
ments were also 5 cm planar reaches within a wide
workspace, defined by pairs of target location (any loca-
tion lying on an invisible 5 cm radius circle centered 24
cm from the body, in the midline i.e. on the same circle
as the centre-out targets) and start location (to specify a
specific reach direction towards that particular target;
Fig. 3a), and were selected according to the “steepest
gradients” principle (Fig. 3c), based on the participant’s
performance map created in the most recent updated
mapping session. For each of the current PM2 and PM3
maps, 2D gradients were computed across the smoothed
32 × 32 map and a subset of 102 movements corre-
sponding to the coordinates of the top 10% of gradient
values was chosen. The training movement for each trial
was then pseudo-randomly selected from one of these

two movement subsets. The two PM maps captured dif-
ferent aspects of impairment (i.e. the ability to move in
good speed and the ability to aim to the target) which
could differ in severity. Therefore, to allow the training
selection to be biased to the metric reflecting more se-
vere impairment, the fraction of movements selected
from each of the two subsets was based on the ratio of
the mean PM scores computed across the worst 25% in
each map. This process of movement selection was re-
peated every 21 trials after updating the PM map data
with the latest performances scores; a new performance
map and set of movements selection was created in a
new mapping session at the end of each week.
Three measures of performance at the robot-

assisted task (collected during the mapping sessions)
served as secondary task-related outcome measures
additional to the above-mentioned secondary clinical
outcome measures. These included the overall level of
the forces applied by the robot (Assist and Guide;
[22]; averaged across 5 repetitions of each of the 64
assessed movements) and the mean movement end
errors (the average distance of the final hand position
from the target). Note that values of these measures
can only indicate level of impaired performance (as
the values converge to zero force (or error) for
well-executed movements). Note also that the end
error measure is compromised by the robot assistance
and by the time limit on trial duration. We chose not
to include PM2 and PM3 as secondary outcome mea-
sures because they are not reliably comparable across
subjects, as they depict performance relative to indivi-
dualised criteria and they are not bounded by min-
imal or maximal levels and hence cannot be
normalised. They are also confounded by the robot
assistance and guidance forces.

Analysis
Statistical analysis was conducted using SPSS [35].
Normally distributed data, confirmed via Shapiro-Wilk
test for normality (p ≥ 0.05), were compared using
parametric tests (2-tailed; Student’s t-test (test group:
df = 6; control group: df = 8) or repeated measures
ANOVA). Otherwise, non-parametric tests were used
(2-tailed; Wilcoxon signed rank test for within-group
comparisons and Mann-Whitney U Test (exact) for
between-group comparisons). Homogeneity of vari-
ance was decided based on Levene’s Test (p ≥ 0.05).
For one measure, namely the post-training FMA-UE

score, the training effect (score change) correlated sig-
nificantly with baseline data. In that case, the data of the
two groups were compared using one-way analysis of
covariance (ANCOVA), after confirming that all the as-
sumptions were validated, including homogeneity of
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error variances confirmed by Levene’s Test and normally
distributed residuals based on Shapiro-Wilk test and
Q-Q plots.
Since there was a large variation across participants in

task performance and required levels of robot assistance,
the task-related training effects were also analysed in
terms of percent of change relative to baseline. This
approach could not be applied for the analysis of the
effect of training clinical assessments since the clinical
scales are ordinal.
The overall task difficulty (in the mapping sessions)

was evaluated by the mean values of the secondary
task-related outcome measures (Assist, Guide and end
error), across all the 64 assessed movements, while
the variation of task difficulty across movements was
evaluated by the standard deviation across these
movements.
A mapping-vs-training difficulty index -the relative

difference in difficulty between the mapping sessions

and their adjacent training sessions (see Results) -
was evaluated as the mean difference in the force
(Guide or Assist) provided during these sessions:

Δdif¼ 1
2nþ 1

½
X5

w¼1

ðFtrainingðsðwÞ−1Þ−FmappingðsðwÞÞÞ
FmappingðsðwÞÞ

þ
X4

w¼1

ðFtrainingðsðwÞ þ 1Þ−FmappingðsðwÞÞÞ
FmappingðsðwÞÞ

&;

ð1Þ

where Fmapping and Ftraining are the applied Guide or As-
sist forces during the mapping and training sessions, re-
spectively; s(w) – the number of mapping session s at
week w within the training phase.

Results
Baseline
The severity of UL impairment at entry to the protocol,
and the locations and extent of the participants’ brain

C

A B

Fig. 4 FMA-UE scores. a Baseline scores of the two groups did not significantly differ. b Correlation between baseline score and training-induced
change. c Post-training score change relative to baseline (plotting the adjusted estimated marginal means by controlling for baseline scores as a
covariate). Error bars in panels a and c indicate standard error of the mean
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lesions are summarised in Table 1. For participants C5,
C6 and T3, limited anatomical details were available; for
the remainder, the lesion location was based on a
current T1-weighted structural MR image.
The FMA-UE baseline scores of the two groups were

comparable (Fig. 4a; p = 0.475), as expected from the strati-
fied group allocation. Likewise, the two groups did not sig-
nificantly differ in baseline values of any of the secondary
outcome measures (both clinical and task-related (see
Additional file 1: Tables S1 and S2). There was a floor effect
for the nMAS-UE scale where most participants (6 control
and 5 test group) had minimal scores (≤1.5 out of 18).

Task performance variability
Generally, in all the mapping sessions, the raw PM data
varied systematically across movement conditions. Lin-
ear correlation between the raw mapping data and their
Gaussian Process interpolation regression fit was gener-
ally high for each map. The median variance explained
(r-squared values) exceeded 0.6 and the lower quartile
was higher than 0.43 across groups and PM maps (i.e.
75% of the cases had r-squared > 0.43). Low r-square
(< 0.2) values were found in some sessions for 3
better-performing patients (FMA-UE ≥ 38) and once
each for two more severely impaired patients. In each of
these cases the PM maps were ‘flattened’, with good or
bad performance respectively.

Post-training effects
Following training, all but one participant (participant C9)
improved in their FMA-UE scores showing an average in-
crease of 3.13 ± 0.6 relative to baseline. A 2 by 2 repeated
measures ANOVA, with between-subject factor group (test,
control) and within subject factor session (baseline,
post-training) confirmed a significant main effect of session
(F (1,14) = 29.456, p < 0.001, partial η2 = 0.68.
On average, the test group’s improvement exceeded

that of the control group (with increases in FMA-UE of
4.00 ± 0.9 and 2.4 ± 0.8, respectively), although the
ANOVA failed to show significant interaction between
the session and group effects (F (1,14), p = 0.21, partial
η2 = 0.11). Still, further inspection of the data revealed a
strong linear correlation between improvement (baseli-
ne-to-post training score change) and the baseline level
-for both test and control groups (Fig. 4b; Pearson’s rho
= 0.94 and 0.81, respectively; p < 0.01 in both cases).
Hence, to compare the post-training effects while
controlling for this confounding effect of the baseline
scores, a one-way ANCOVA was conducted with
group (test, control) as an independent variable,
post-training change in FMA-UE score from baseline
as the dependent variable, and baseline FMA-UE
score as the covariate. This analysis revealed a highly
significant group effect (F (1,13) = 12.717, p = 0.003)

and a large statistical effect size(partial η2 = 0.5). The
ANCOVA-based estimated marginal means of the
score change confirm the superior improvement for
the test group compared to control (4.42 vs. 2.12, re-
spectively; Fig. 4c).
For both groups, none of the secondary clinical out-

come measures showed significant change from baseline
(see Additional file 1: Table S3).
Intriguingly, the task-related performance measures

(Assist, Guide and end-error) taken in the post-training
mapping session did not mirror the group effect of train-
ing on the clinical FMA-UE scores. For each perform-
ance measure we conducted a 2-by-2 repeated measures
ANOVA with group (test, control) as a between-subject
factor and session (baseline, post-training) as a
within-subject factor), comparing the mean performance
values across the 8 × 8 movements tested conditions (see
Additional file 1: Table S4). Although both groups
showed a trend towards a within-subject improvement
with the task (i.e. reduction in lateral guidance and for-
ward assistance from the robot, and in the end errors;
shown as negative change values in Table 2) a significant
main effect of session was found only for the end-error
measure (F (1,14) = 15.4, p = 0.002, partial η2 = 0.52; As-
sist: p = 0.43; Guide: p = 0.069). Moreover, even for the
end-error measure there was no significant interaction
between the group and session effects (F (1,14) = 0.16,
p = 0.70, partial η2 = 0.01), indicating comparable im-
provement in both groups (Assist and Guide: p > 026).
Similarly, the variation of task performance (computed
as standard deviation across the 64 movement condi-
tions) showed a trend of reduced variation after training
(negative change values in Table 2), which was margin-
ally significant only in the case of the end-error mea-
sures (F (1,14) = 4.66, p = 0.049, partial η2 = 0.25). There
was no interaction effect between the session and group
factors (p > 0.065 (see Additional file 1: Table S5)).

Table 2 Post-training change in task performance relative to
the baseline

% Changea

Guide Assist End-error

meanb Test −14.5 ± 20.2 −13.5 ± 34.4 −16.9 ± 13.3

control −21.6 ± 21.6 −24.4 ± 37.7 −19.3 ± 19.9

p (between groups) 0.51d 0.56 d 0.79 d

variationc test −7.5 ± 45.8 − 4.5 ± 41.2 − 10.4 ± 26.9

control −23.6 ± 28.6 −25.2 ± 35.1 −19.6 ± 23.0

p (between groups) 0.92 e 0.30 d 0.47 d

aMean ± SD change relative to baseline (across subjects). Negative change
indicates improvement
bMean across the 8 × 8 movement testing conditions
cThe standard deviation across the 8 × 8 movement conditions
dIndependent samples T-test, 2-tailed; equal variance assumed
eMann-Whitney U Test
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Unlike the FMA_UE data, there was no consistent cor-
relation between the post-training change in perform-
ance and the baseline performance values for any of the
task performance measures. However, in 4 of the 6 task
performance measures there was a high correlation
(Pearson’s rho> 0.7) between the baseline score and the
post-training change (but inconsistently across groups)
or the absolute value of the change. Therefore, to
control for possible between-subject masking of
within-subject training effects we also compared the per-
cent of within-subject change in task performance rela-
tive to the baseline level. However, as shown in Table 2,
the % change of performance (or its variation) after
training did not differ significantly between the two
group for any of the task-performance measures.
In summary, despite the highly significant differential

improvement in impairment scores (FMA-UE), the two
groups did not differ significantly in their improvement
in the task itself. This unexpected finding might reflect a
methodological confound in how we assessed task per-
formance. The potential confound lies in the fact that
the training and mapping sessions involve different sets
of movements. For the control group, training is re-
stricted to 32 movements, all starting at the workspace
centre. During mapping sessions their performance is
assessed across 64 movements, only 8 which start at the
centre, and some of these may be more demanding for
any one participant than the centre-out reaches, espe-
cially movements requiring larger elbow extension. In
contrast, for the test group, the training movements are
selected to be challenging (the performance-based stee-
pest gradients principle), and vary in both start and
target locations, whereas the mapping performance in-
volves the same 64 movements as for the control group,
some which are likely to be easier than the training set.

Hence the two groups may show opposite differences
between mapping and training sessions in the overall
level of task difficulty, which might lead to differences in
strategy and motivation, potentially masking genuine
learning effects. To evaluate this possibility we looked at
the mapping vs. training difficulty, namely, the difference
in the mean Assist and Guide levels between each map-
ping session and its adjacent training sessions (see Eq. 1,
Methods). Indeed, the mapping-vs-training difficulty
index for the guiding force differed from zero for
both groups (Fig. 5; test group: p = 0.018 (one-sample
Wilcoxon signed rank test); control group: p = 0.025
(t (8) = − 2.75, one-sample t-test)), indicating that the
guiding force levels differed between the two session
types. Importantly, as predicted, the differences were
opposed between the two groups. For the test group,
the training sessions required overall more guiding
force than in the mapping sessions, and vice versa for
the control group. A trend with the same effect was
seen for the Assist measures, but this was not signifi-
cant (test group: t (6) = 1.42, p = 0.207; control group:
t (8) = 1.01,p = 0.343).

Follow-up
Four weeks after the end of training the majority of the
participants still maintained above-baseline FMA-UE
scores (6 out of the 7 test participants, at least 2 points
above baseline; 7 out of the 9 participants: at least 1 point
above baseline). A by 2-by-2 repeated measure ANOVA,
with session (baseline, follow-up) as a within-subject fac-
tor and group as a between-subject factor, confirmed a
main effect of session (F (1,14) = 16.37, p = 0.001, partial
η2 = 0.54). However, there was no significant interaction
between the session and group effects (F (1,14) = 0.04,
p = 0.843, partial η2 = 0.003), implying that the score

Fig. 5 The difference in overall difficulty between the mapping sessions and the training sessions for the two groups, assessed with mean Guide
force levels. Error bars indicate standard error of the mean
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change at the follow-up session was comparable in both
groups (test group: 2.71 ± 1.15; control: 3 ± 0.87 (mean
and s.e.m.)). Note that - unlike for the post-training data -
here the amount of score change from baseline did not
significantly correlate with the baseline scores (p > 0.17).
Further inspection reveals that this is mainly due to in-
crease in within-group variability in the follow-up session,
especially in the test group where three participants clearly
continued to improve whereas the scores of two others
sharply declined between the post-training session and the
follow-up (see Additional file 2: Figure S1).
Similar 2-by-2 ANOVAs of the follow-up data of each of

the task-related measures replicate the post-training results,
with largely non-significant training effects except for a
main session effect on end-error (see Additional file 1:
Table S6). The post-training improvement from baseline
was maintained only for the mean end-errors measure
(main effect of session: F (1,14) = 7.78, p = 0.014, partial η2

= 0.36), and even in that case, there was not significant
interaction between the group and session effects (F (1,14)
= 3.78, p = 0.072, partial η2 = 0.21). The trend of
post-training within-subject improvement in end-in error
variation was not maintained here (p = 0.21).

Discussion
We present a novel method of robot-assisted training
for upper-limb motor impairment that is based on indi-
vidualized selection of movements. Specifically, training
with movements located within regions of steep transi-
tion from high to low performance on the individual’s
performance maps led to noticable improvement in
FMA-UE clinical scores compared to training with
standard (non-individualised) centre-out movements.
The statistical effect size was large (partial η2 = 0.5), and
highly significant (p < 0.003). To our knowledge this is
the first demonstration of boosting UL motor cap-
acity by the individualised selection of robot-assisted
training sets.
The large statistical effect size is particularly striking,

especially given that it was demonstrated on a popula-
tion of moderate to severe chronic hemiparetic partici-
pants, who tend to show poorer recovery [36, 37].
Importantly the benefit was demonstrated in terms of
clinical assessment (FMA-UE scores) suggesting that our
method is effective in reducing UL motor impairment,
rather than being limited to task-related training effects.
Although there was no improvement in the secondary
clinical outcome measures, potentially due to the rather
crude scale for MAS and BI and a floor effect for UL
nMAS (see Additional file 1: Table S3), the large statis-
tical effect size for the primary clinical outcome measure
(FM-UE) suggests it is a step in the right direction. Like-
wise, given the small sample size, the possibility that the
steepest gradient effect is overestimated cannot be

ruled out, but the large statistical effect size justifies
further trials with large sample sizes to confirm the
therapeutic effect.
Overall, the positive effect of both performance-based

(steepest gradients) and standard robot-assisted training
on improving clinical scores was maintained for at least
1 month for most participants, echoing previous studies
[38]. However, in our study the superior benefit of
steepest gradients-based training over and above the
standard was not retained for about half the group. Un-
derstanding this null effect requires further study. One po-
tential explanation is that steepest-gradients-based
training may boost the rate of improvement, perhaps due
to the focus on movements that optimise improvement,
while minimizing time spent on movements that do not
contribute to improvement, but this higher rate of gain
may be accompanied with less efficient consolidation. It is
possible, therefore, that longer training with more repeti-
tions of steepest-gradients -selected movements would in-
crease the early gain seen in steepest-gradients-based
training, and also improve its long-term consolidation. En-
couraging support for this prediction is our finding of a
tight positive relationship between the baseline level and
improvement in FMA-UE score. This suggests that longer
training would lead to some acceleration of improvement,
as individual trainees move from their baseline to higher
and higher scores and derive greater benefit from add-
itional training. Combining steepest-gradients-based train-
ing and transcranial direct current stimulation (tDCS)
over the ipsilesional motor cortex may also promote con-
solidation and further enhance the effect, based on the ef-
fectiveness of that method in enhancing motor learning
consolidation in healthy participants [39] and its applic-
ability for use in stroke patient population [40]; however,
clinical evidence is still weak [41].
Considering the severity of hemiparesis for some of

the participants, the 5-week training period of our
proof-of-concept study may have been insufficient. This
might account for the fact that despite strong evidence
for superior benefit of the steepest gradients training ap-
proach, the overall post-training change in FMA-UE
score did not reach the criterion for a minimum detect-
able score change (5.2 points) [42]. However, the 3 least
impaired individuals did exceed this threshold. Note also
that -based on the linear relationship between
post-training improvement and baseline scores - sur-
passing this “minimum detectable change” after 5 weeks
of steepest-gradient training would be predicted for indi-
viduals with baseline FMA-UE scores of at least 24
points, whereas a baseline level of at least 31 points
would be needed to benefit from control training. In
other words, we expect our protocol to have benefit for
a wider range of abilities. Of course, larger sample sizes
are needed to verify this prediction.
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Another issue is the unexpected similarity of the
groups in their post-training improvement in the task,
despite clear evidence for an enhanced benefit for the
test group in clinical scores (FMA-UE). Comparing
the mean guiding force provided in the mapping and
training sessions revealed that the relative difficulty of
the training vs. mapping sessions was opposite in the
two groups (recall that the mapping conditions were
identical between groups). Specifically, the test group
required significantly more guidance in the training
sessions than in mapping sessions, and vice versa for
the control group. Hence we suggest that the test
group tended to compromise their performance dur-
ing the easier mapping sessions, as even with less ef-
fort they could perform as well as–or even better–
than in the training sessions, whereas control partici-
pants attempted to enhance their effort during the
mapping sessions, in order to maintain their overall
performance level similar to that in the more difficult
training sessions. Together these opposite effects
might cancel out any measured improvement of the
test group’s task performance that was expected from
their improved clinical scores. This indicates a meth-
odological limitation of this study and an important
lesson to be considered when designing future studies
on task-related learning (see also [43]). One way to
minimise such performance biases in future studies
would be to use blocked (rather than randomised) tri-
als of different movements during the mapping ses-
sions. This would encourage strategies to maximise
performance for each assessed movement, allowing
the best performance for each action to be mapped.
Nevertheless, considering that the objective of our
study was to improve the clinical outcome of UL
robot-assisted therapy, task-related effects are only of
secondary interest.
However, the finding that the steepest-gradients

-based training was more difficult on average also
raises the possibility that the key point for superior
training outcome is the overall level of difficulty of
the training rather than the specific set of trained
movement. Clarifying this requires further research
with multiple training conditions where the level of
difficulty and the selection of training movements are
manipulated. A similar issue regards to the choice of
the specific conditions of the control intervention.
Centre-out training was chosen because it is com-
monly used in robot-assisted intervention for planar
UL movements [7, 16, 26] and it involves a range of
movements. However, in our study the movement dis-
placement (5 cm) was shorter than in previous studies
(usually ≥10 cm). The 5 cm distance was chosen to
enable equal movement displacement in the two
groups: since the steepest gradients method requires

full mapping of performance across a wide range of
start positions, this imposes a limitation on the max-
imum movement displacement (around 5–8 cm; con-
strained by the comfortable reach distance of a
typical adult participant). Potentially the effect of
training with such a small movement displacement
might be sub-optimal, but this possibility is not sup-
ported by evidence from large sample-size trials that
provided intensive training with larger UL movements
in chronic stroke hemiparetics. For example, 6 weeks
of intensive training with larger planar movements
led to improvement of between 1 and 3 points in
FMA-UE score (Fig. 2 panels A & B in ref. [7]). Simi-
larly, 4 weeks of intensive training with large 3D
movements led to a 2.6 score change [44]. These re-
sults are comparable with the overall improvement
found for the control group in our study (2.4 score
change). Still, further study with larger sample size
will be needed to exclude the possibility that our
finding of superior effectiveness of the steepest gradi-
ents training is related to the particular selection of
the centre-out control condition.
Finally, updating the performance maps required a full

weekly session. It would have been desirable to update
the maps during the training, to save time. However, al-
though technically possible, the steepest gradients train-
ing is always limited to specific sub-regions of the map
and so using only the training movements to update the
performance map is likely to lead to some regions being
undersampled, and this may distort the estimate of the
steepest gradient profile. Hence, to avoid biases we
chose to include a periodic assessment of performance
across the full workspace.

Conclusions
This study provides a proof of concept for the principle of
using steepest performance gradients in selecting
robot-assisted training of the upper limb after stroke. The
large statistical effect size encourages further clinical trial
work with large sample sizes. Further work may also help
to optimise the method. The next step would be to evalu-
ate whether longer periods of individualized training can
extend its benefit for longer term retention and also in-
crease training effectiveness. It would also be valuable to
extend the range of movement (e.g. in other planes). Fi-
nally, the principle of steepest performance gradients is a
general principle for selection of training based on a de-
tailed performance profile. It is left for future studies to
evaluate whether this principle would be advantageous for
other motor impairments (e.g. gait, or hand movements),
other devices (e.g. exoskeletons), or even for training and
assessment without assistive force devices (e.g. with per-
formance based on motion tracking).
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Additional files

Additional file 1: This file contains two tables summarising the
secondary outcome measure results. Tables S1 and S2 summarise the
baseline levels of all the clinical task-related performance measures,
respectively. Table S2 and Table S3 summarises the post-training change
of the clinical measures (PDF 191 kb). Tables S4 and S5 summarise the
post-training effects on the mean and variation of the task performance,
respectively (in terms of repeated measures ANOVA). Table S6
summarises the task-related effects during the follow-up session
(in terms of repeated measures ANOVA). (PDF 190 kb)

Additional file 2: Figure S1. This file contains graphs showing the post-
training and follow-up change in individual FMA_UE scores. (PDF 83 kb)
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SUPPLEMENTARY TABLE S1: 
Secondary clinical outcome measures – baseline valuesa  

Group  MRC‐MPS  MAS 

(elbow flexors)  nMAS ‐ UE  BI 

Control  49.7 (5.8)  1.22 (0.62)  2.67 (4.02)  18.2 (1.8) 

Test  39.9 (14.9)  1.28 (0.49)  1.93 (2.96)  16.8 (3.2) 

p  
(between groups)   0.14b  0.91c  0.62c  0.30b 

aGroup means (and standard deviations) 
MRC‐MPS: MRC Muscle Power scale (score range: 0‐70); MAS: Modified Ashworth Scale (0‐4); nMAS‐UE: Upper extremity 
part of new Motor Assessment Scale (0‐18), BI: Barthel index (0‐20). For all scales—except MAS – higher score indicates 
lower severity. 
bIndependent samples T‐test 2‐tailed (Test group: df=6; control group: df= 8) 
cMann‐Whitney U Test, 2‐tailed, exact  
 

SUPPLEMENTARY TABLE S2: 
Secondary task‐related outcome measures – baseline valuesa  

Group 
Meanb   Variationc

Assist(N)  Guide(N)  end error
(cm)   Assist(N)  Guide(N)  end error 

(cm)  

Control  2.02 (1.21)  1.81 (1.14) 0.82 (0.28) 1.71 (1.17) 1.23 (0.89) 0.43 (0.20) 

Test  2.18 (1.65)  2.02 (1.64) 0.89 (0.39) 1.49 (1.12) 1.29 (1.09) 0.44 (0.25) 

pd  
(between groups)   0.82  0.77  0.72  0.69  0.90  0.93 
aGroup means (and standard deviations) 
b Mean performance across the 8x8 movement testing conditions 
c The standard deviation of performance computed across the 8x8 movement conditions. 
d Independent samples T‐test 2‐tailed (Test group: df=6; control group: df= 8) 
 
 

SUPPLEMENTARY TABLE S3: 

Secondary clinical outcome measures: post‐training change from baselinea   

Group  MRC‐MPS  MAS
(elbow flexors)  UL nMAS  BI 

Control  ‐0.4 (6.7)
p=0.71b 

‐0.1 (0.5)
p=0.56c 

1.9 (3.8)
p=0.41b 

0.19 (0.5)d 

p=0.50b 

Test  2.6 (4.3) 
p=0.17c 

0.07 (0.19)
p=0.25b 

1.8 (2.7)
p=1.0c 

‐0.5 (1.1) 
p=0.28c 

a Group means (and standard deviations) 
b Related‐samples Wilcoxon Signed Rank Test (exact sig., 2‐tailed) 
c Paired T‐test (Test group: df=6; control group: df= 8 ‐‐except for BI where df=7) 
dMissing data from one aphasic participant (due to unavailability of interpreter for his speech) 
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SUPPLEMENTARY TABLE S4 
Task‐related training effects on post‐training mean performancea: 2x2 repeated measure ANOVAb 

  Guide  Assist End‐error 

Session effect 
(within subject) 

F(1,14)=3.89, p=0.069 
partial η2=0.22 

F(1,14)=0.67 , p=0.43 , 
partial η2=0.05 

F(1,14)=15.4 , p=0.002 , 
partial η2=0.52 

Group effect 
F(1,14)=0.22 , p=0.65 , 
partial η2=0.02 

F(1,14)=0.27 , p=0.63 , 
partial η2=0.02 

F(1,14)=0.08 , p=0.78 , 
partial η2=0.01 

Session x group 
interaction 

F(1,14)=0.76 , p=0.40 , 
partial η2=0.05 

F(1,14)=1.37 , p=0.26 , 
partial η2=0.089 

F(1,14)=0.16 , p=0.70 , 
partial η2=0.01 

aMean performance across the 8x8 movement testing conditions 
bRepeated measures ANOVA with session (baseline, post‐training) as a within‐subject factor  and group 
(control, test) as a between‐subject factor 
 

SUPPLEMENTARY TABLE S5 
Task‐related training effects on post‐training performance variationa: 2x2 repeated measure 
ANOVAsb 

  Guide  Assist  End‐error 

Session effect 
(within subject) 

F(1,14)=0.39 , p=0.54 , 
partial η2=0.02 

F(1,14)=0.41 , p=0.53 , 
partial η2=0.03 

F(1,14)=4.66 , p=0.049 , 
partial η2=0.25 

Group effect 
F(1,14)=0.25 , p=0.62 , 
partial η2=0.02 

F(1,14)=0.02 , p=0.89 , 
partial η2=0.001 

F(1,14)=0.051 , p=0.83 , 
partial η2=0.01 

Session x group 
interaction 

F(1,14)=1.37 , p=0.26 , 
partial η2=0.09 

F(1,14)=4.01 , p=0.065 , 
partial η2=0.22 

F(1,14)=0.16 , p=0.70 , 
partial η2=0.004 

aThe standard deviation of performance computed across the 8x8 movement conditions. 
bRepeated measures ANOVAs conducted for each measure with session (baseline, post‐training) as a within‐
subject factor  and group (control, test) as a between‐subject factor 
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SUPPLEMENTARY TABLE S6 
Task‐related training effects in the follow‐up session: 2x2 repeated measure ANOVAsa 

Measure 
type    Guide  Assist  End‐error 

Meanb 

Session effect 
(within subject) 

F(1,14)=1.49 , p=0.24 , 
partial η2=0.096 

F(1,14)=0.038 , p=0.85 , 
partial η2=0.003 

F(1,14)=7.78 , p=0.014 , 
partial η2=0.36 

Group effect 
F(1,14)=0.007 , p=0.97 , 
partial η2<0.001 

F(1,14)=0.003 , p=0.96 , 
partial η2<0.001 

F(1,14)=0.004 , p=0.95 , 
partial η2<0.001 

Session x group 
interaction 

F(1,14)=2.51 , p=0.36 , 
partial η2=0.152 

F(1,14)=0.93 , p=0.35 , 
partial η2=0.063 

F(1,14)=3.78 , p=0.072 , 
partial η2=0.21 

Variationc 

Session effect 
(within subject) 

F(1,14)= 0.011 , p=0.92 , 
partial η2=0.001 

F(1,14)=0.016 , p=0.90 , 
partial η2=0.001 

F(1,14)=1.75 , p=0.208 , 
partialη2=0.11 

Group effect 
F(1,14)=0.003 , p=0.96 , 
partial η2<0.001 

F(1,14)=0.096 , p=0.76 , 
partial η2=0.007 

F(1,14)=0.02 , p=0.91 , 
partial η2=0.01 

Session x group 
interaction 

F(1,14)=0.99 , p=0.34 , 
partial η2=0.066 

F(1,14)=0.29 , p=0.60 , 
partial η2=0.02 

F(1,14)=0.96 , p=0.344 , 
partialη2=0.06 

a Repeated measures ANOVAs conducted for each performance measure with session (baseline, follow‐up) as 
a within‐subject factor and group (control, test) as a between‐subject factor. 
b Mean performance across the 8x8 movement testing conditions 
c The standard deviation of performance computed across the 8x8 movement conditions. 



SUPPLEMENTARY FIGURE S1: 

 

Figure S1. Individual change in FMA‐EU scores (from baseline) few days post training and 4 weeks later (follow‐up) in the 
two groups. Dashed lines indicate score decreases in follow‐up session compared to post‐training. 
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