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EMG prediction from Motor Cortical Recordings
via a Non-Negative Point Process Filter
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Lee E. Miller

Abstract—A constrained point process filtering mechanism
for prediction of electromyogram (EMG) signals from multi-
channel neural spike recordings is proposed here. Filters from the
Kalman family are inherently sub-optimal in dealing with non-
Gaussian observations, or a state evolution that deviates from the
Gaussianity assumption. To address these limitations, we modeled
the non-Gaussian neural spike train observations by using a
generalized linear model (GLM) that encapsulates covariates of
neural activity, including the neurons’ own spiking history, con-
current ensemble activity, and extrinsic covariates (EMG signals).
In order to predict the envelopes of EMGs, we reformulated the
Kalman filter (KF) in an optimization framework and utilized a
non-negativity constraint. This structure characterizes the non-
linear correspondence between neural activity and EMG signals
reasonably. The EMGs were recorded from twelve forearm and
hand muscles of a behaving monkey during a grip-force task.
For the case of limited training data, the constrained point
process filter improved the prediction accuracy when compared
to a conventional Wiener cascade filter (a linear causal filter
followed by a static non-linearity) for different bin sizes and
delays between input spikes and EMG output. For longer training
data sets, results of the proposed filter and that of the Wiener
cascade filter were comparable.

Index Terms—Brain-machine interface, electromyogram sig-
nal, generalized linear model, Kalman filter, optimization.

I. Introduction

Biomimetic brain-machine interfaces (BMI) [1], [2] have
evolved from experimental paradigms exploring the neural
coding of natural arm and hand movements to real-time neural
firing rates decoders in both monkeys and humans [3]–[5]. In
a typical BMI setup, monkeys perform stereotyped, repeated
arm or hand movements using a manipulandum, e.g. in the
classic center-out or a random target tracking task, and the
firing rates of tens of individual motor cortex neurons are
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fitted to arm kinematics, (e.g. position and velocity). The
estimated mapping from cortical activity to kinematics is
then used to drive an effector. While neural activity recorded
from primary motor (M1) cortex is well documented to have
high correlations with kinematic parameters of movement [6]–
[9], relatively few BMI studies have addressed the kinetic
component (for exceptions, see [1], [10], [11]).

A small number of previous studies have used multi-
electrode recordings to predict EMG activity. Carmena et.
al in [12] showed that accurate real-time prediction of the
EMGs of multiple arm muscles can be obtained through
linear decoding of multi-unit signals recorded from several
cortical areas. Wiener cascade models were used in [13] to
predict EMG activity of arm and hand muscles from the
spikes recorded from motor cortical neurons. Although the
bandwidth of the EMGs is larger than that of arm position
or velocity signals, the predictions accounted for as much
as 70-80% of the actual EMG variance under various ex-
perimental conditions [14]. Moreover, it was possible to use
functional electrical stimulation (FES) controlled by real-time
EMG predictions to activate the temporarily paralyzed forearm
muscles of monkey subjects and restore their ability to use
their hands [14], [15].

Current multi-electrode recording techniques enable simul-
taneous registration of the neural spiking activity from tens of
neurons. A decoder can make use of the underlying functional
connectivity between the neurons, together with the individual
rate codes [16]. Several variations of the Kalman filter that
reliably decode arm movement kinematics have appeared in
the literature [17]–[20]. However, a fundamental limitation in
using filters from the Kalman family is their sub-optimality in
dealing with non-Gaussian observations or systems in which
the state evolution violates the linear-Gaussian Markov process
assumption.

We propose an alternative approach to EMG prediction
using multi-channel neural spike recordings in the state-
space. Unlike the conventional Kalman filtering based motor
decoders in the BMI literature, we have employed a point
process-generalized linear model (GLM) setting [21], [22], to
estimate the instantaneous neural firing rate, and a constrained
Kalman filter to predict non-negative EMG envelopes. The
point process-GLM accommodated the neuron’s own spiking
history, concurrent ensemble activity, and extrinsic covariates
such as sensory stimuli or behavioral measures such as the
EMGs in this work. The goal of the present study was to
determine whether a point process-based filter can generate
more accurate estimates of EMGs than are provided by the
Wiener filter-based methods used previously.
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In Section II, we first briefly review the classic Kalman
filter and then in Sections II-A and II-B, we present a
direct optimization-based Kalman filtering approach for EMG
prediction. Results are reported in Section III and Section IV
presents the concluding remarks.

II. Method
In the classic Kalman filter setting, the hidden state and ob-

servation vectors at time k, denoted by qk and yk respectively,
evolve as linear and Gaussian Markov processes completely
defined by p(qk+1|qk) and p(yk |qk). Therefore,

qk+1|qk ∼ N(qk; Aqk,Cq)
yk |qk ∼ N(yk; Bqk,Cy) (1)

where N(a;µ,C) denotes a is a Gaussian distributed vector
with mean vector E[a] = µ and covariance matrix C. The
system parameters A,B,Cq, and Cy are assumed to be fixed.
In the forward-backward recursive solution of the Kalman
filter [23], the objective is to predict the posterior expectation
E(qk |y1:k), where y1:k = {y1, y2, · · · , yk}, and some related
quantities. However, the Kalman filter yields the optimal
solution to E(qk |y1:k) only if qk is discrete or if it evolves
continuously when the dynamics p(qk |qk−1) and the observa-
tions p(yk |qk) are linear and Gaussian.

Kalman filters in their original formulation may not be
effective in neural data analysis unless certain requirements
are satisfied. In principle, the neural spike observations are
point processes and therefore p(yk |qk) may not be modeled by
Gaussian distribution functions. Also, in this case the condi-
tional probability p(qk |y1:k) may be highly non-Gaussian [21],
[24].

Several different instantiations of this recursive Gaussian
approximation approach with varying degrees of accuracy
versus computational efficiency have been introduced in the
motor decoding literature [17], [19]–[21], [25]. However, in
order to circumvent the above shortcomings, all of them have
placed the neural and behavioral data into bins of greater than
70 ms duration. This approach has been effective for prediction
of the kinematics of hand movements in the BMI studies where
hand position and velocity may be modeled as Markov linear-
Gaussian processes.

In contrast to movement kinematics, the dynamics of EMG
signals, p(qk |qk−1), are not smooth (in this paper, qk is a
12×1 vector of the EMG activity at time k). The power in an
EMG signal is typically computed following rectification. This
constrains the state qk to be non-negative, leading to a discon-
tinuity in log p(qk |qk−1) at qk = 0. The distribution p(qk |y1:k)
turns out to be non-Gaussian and since there is no mechanism
to constrain the estimates to be non-negative, breakdown of
the basic Kalman filter assumptions is inevitable.

A. Direct Optimization Interpretation of Kalman Filters
A prime objective in using a Kalman filter is to compute

the conditional expectation of the hidden state path q1:K given
the observations y1:K . In a linear-Gaussian setting,

p(q1:K , y1:K) = p(q1).
K∏

k=2

p(qk |qk−1).
K∏

k=1

p(yk |qk) (2)

forms a jointly Gaussian random vector, and therefore
p(q1:K |y1:K) remains Gaussian. Coincidence of the mean and
mode of a Gaussian distribution implies that E(q1:K |y1:K)
is equal to the maximum a posteriori (MAP) estimate of
p(q1:K |y1:K):

q̂1:K = arg max
q1:K

p(q1:K |y1:K) = arg max
q1:K

log p(q1:K , y1:K). (3)

Since arg maxq1:K log p(q1:K , y1:K) is a quadratic function of in
q1:K , E(q1:K |y1:K) may be solved by an unconstrained quadratic
program in q1:K - see Appendix I for details. We thus have,

q̂1:K = arg max
q1:K

log p(q1:K |y1:K)

= arg max
q1:K

[1
2

qT
1:KHq1:K + ∇T q1:K

]
= −H−1∇ (4)

where the Hessian H and gradient ∇ of log p(q1:K |y1:K) are

∇ = ∇q1:K log p(q1:K |y1:K)|q1:K=0 (5)
H = ∇∇q1:K log p(q1:K |y1:K)|q1:K=0. (6)

In practice, H−1 is never computed explicitly. Rather, we only
solve the linear equation Hq̂1:K = −∇. The Hessian H is
a block-tridiagonal matrix and the matrices A and Cq are
assumed to be fixed and are estimated by their maximum
likelihood solution. Appendix I contains the details for com-
putation of H and ∇.

Extension to Point Process Observation: So far, we have
assumed that p(yk |qk) (the probability of neural firings given
an external covariate qk, e.g. a sensory stimulus or a motor
output such as the EMG signals in this work) is Gaussian
distributed. However, spike recordings are point processes.
We extend the above optimization approach to compute the
MAP estimate of q1:K in a general non-Gaussian scenario. We
assume that log p(qk+1|qk) is a concave function of q1:K , that
the initial density log p(q0) is concave, and that the observation
density log p(yk |qk) is concave in qk. Hence, the MAP estimate
of q1:K is a concave problem, see equation (21) in Appendix
II and [26], [27]. The standard Newton’s algorithm can be
applied1 to optimize such an estimate as

q̂ j+1
1:K = q̂ j

1:K −H j−1∇ j (7)

where at iteration j+1, ∇ j and H j are updated at the previous
q̂ j

1:K with

∇ j = ∇q1:K log p(q1:K |y1:K)|q1:K=q̂ j
1:K

(8)

H j = ∇∇q1:K log p(q1:K |y1:K)|q1:K=q̂ j
1:K
. (9)

Now, let N i
k−1 be the counting process giving the total

number of spikes fired by neuron i in the time interval
[0, (k − 1) △ t] where △t represents the bin size. Then, the
probability of observing △N i = N i

k − N i
k−1 spikes in the k-th

time bin from the i-th neuron is

p(yk |qk) = exp(△N i log(λi
k △ t) − λi

k △ t) (10)

1The simple Newton iteration does not always increase the objective
log p(q1:K |y1:K ); thus, we perform a simple backtracking linesearch [28] along
the Newton direction q̂ j

1:K − δ
jH j−1∇ j to determine a suitable stepsize δ j < 1

as the standard remedy for this instability.
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where λi
k denotes the conditional intensity function of neuron i

in the k-th time bin fully characterized with a stochastic neural
point process [21]. Therefore, for an ensemble of C neurons

log p(yk |qk) =

C∑
i=1

log
(
(λi

k △ t)△N i
exp(−λi

k △ t)
)
. (11)

We determine λi
k using a GLM that accounts for the neuron’s

firing history, its functional coupling with other neurons, and
a linear regression from the extrinsic covariate to individual
neurons passed through a log-concave function f (.) ≡ exp(.).
This GLM setting is of the form

λi
k = f

(
bi +B

T
i qk +

C∑
i′=1

J∑
j=1

hi,i′, j ni′,k− j
)

(12)

where qk represents the EMG activity in the k-th time bin,
bi is the baseline firing rate of the i-th neuron and the i-
th row Bi of the observation matrix B encapsulates the i-th
neuron’s preference for target muscles. For instance, if the
i-th neuron fires more frequently when a subset of muscles
are activated, then the elements of Bi corresponding to those
muscles are positive. Here, hi,i′, j captures the i′-th neuron’s
spike history effects on neuron i and J represents the length
of the hi,i′, j. The history of the neuron i is included when
i′ = i. Parameters of this point process model were fitted by
maximum likelihood [29]. This model fitting imposes a little
additional computational expense to estimate the parameters
(bi,Bi), but since both yk and qk are fully observed, no
expectation maximization is needed.

The derivatives of log p(yk |qk) are required in computation
of ∇ j and H j in equations (8) and (9) and are provided in
Appendix II.

B. Log-Barrier Method for Constrained Optimization
The forward-backward methods based on Gaussian approx-

imations of forward distribution p(qk |y1:K) cannot accurately
predict the strictly positive envelope of the EMGs unless a
non-negativity constraint is incorporated. We employed the
standard log-barrier method [26], [30], [31] by replacing the
constrained concave problem

q̂MAP
1:K = arg max

q1:K :qk>0
log p(q1:K |y1:K) (13)

with a sequence of unconstrained concave problems

q̂ϵ1:K = arg max
q1:K

log p(q1:K |y1:K) + ϵ
∑

k

log qk. (14)

Incorporating the penalty term enforces q̂ϵ1:K to satisfy the non-
negativity constraint and if q̂MAP

1:K is unique, then q̂ϵ1:K converges
to q̂MAP

1:K as ϵ → 0.
The Hessian H of the objective function log p(q1:K |y1:K) +
ϵ
∑

k log qk retains the block-tridiagonal structure of the origi-
nal objective log p(q1:K |y1:K) as the barrier term contributes
only to the diagonal elements of H. For instance, the i-th
diagonal element of H is increased by −ϵq2

i .
The mean of a truncated Gaussian distribution will not

necessarily coincide with the mode unless the mode is suffi-
ciently far from the non-negativity constraint [31]. Therefore,
the approximation arg maxq1:K p(q1:K |y1:K) ≈ E(q1:K |y1:K) does
not typically hold in the constrained case.

TABLE I
EMG signals were recorded from the electrodes implanted in these muscles.

We recorded from two sites in FCR.

Abbreviation Name
1 FDSr Flexor digitorum superficialis (radial aspect)
2 FDSu Flexor digitorum superficialis (ulnar aspect)
3 FDPr Flexor digitorum profundus (radial aspect)
4 FDPu Flexor digitorum profundus (ulnar aspect)
5 FCR1 Flexor carpi radialis
6 FCR2 Flexor carpi radialis
7 PAL Palmaris longus
8 FCU Flexor carpi ulnaris
9 ECR Extensor carpi radialis
10 EDC Extensor digitorum communis
11 ECU Extensor carpi ulnaris
12 FDI First dorsal interosseous

C. The Wiener cascade filter

Briefly, in the Wiener filter approach, the EMG activity
recorded from 12 channels is predicted using a linear system
with multiple inputs and a single output [32]. The filter is fitted
using the classic least mean squares (LMS) method. In such a
filter, each of the N neural inputs is convolved with a causal
finite impulse response function, and combined to produce a
single output. This linear system can be followed by a static
non-linearity to form a Wiener cascade model [13]. Hence,
the output of such a system is a linear, weighted combination
of the recent history of neural signals, transformed by a static
non-linearity, in our case, a third order polynomial. The non-
linearity acted as a threshold that eliminated fluctuations in the
predictions when muscles were quiescent. Also it amplified
the estimated peaks of the EMG activity. In principle, the
non-linearity could have been cascaded following the proposed
filter to further improve those estimates; however we did not
pursue this direction here.

D. Experiment

The experiment involved one rhesus macaque monkey,
chronically implanted with a multi-electrode array (Blackrock
Microsystems) in the arm area of motor cortex. Details of
the surgical procedure have been described previously in [13].
All animal care, surgical, and research procedures of this work
were approved by the Institutional Animal Care and Use Com-
mittee of Northwestern University. Neural data were collected
at 25 KHz sampling rate using a Cerebus acquisition system
(Blackrock Microsystems). The monkey was also implanted
with chronic intramuscular EMG electrodes in twelve forearm
and hand muscles (see Table I) routed subcutaneously to a
percutaneous connector. The EMG activity from all muscles
was sampled at a rate of 2 KHz.

The monkey’s behavioral task consisted of applying a grip
force to a ball to control the vertical movement of a small
circular cursor on a screen. The monkey placed its hand on a
touch pad to start each trial, until receiving a Go tone. The ball,
which was held by the experimenter in front of the monkey,
was connected by a flexible tube to a pressure transducer
which provided a measure of grip force. The monkey was
allowed five seconds after the Go tone to reach for and squeeze
the ball, and then was required to hold the cursor inside a force
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target for 0.8 seconds. Following successful trials, the monkey
received a controlled amount of fruit juice.

We recorded spike and EMG activity in four days. On each
of the first two days, we recorded three, six-minute data files,
comprising dataset I. On each of the second two days, we
recorded one, 20 minute long data file (dataset II). There
was a relatively long interval (30 days) between recordings of
Dataset II. In each dataset, single and multi-unit spike signals
were sorted on the first day using 2D PCA-space visualization
computed with the Cerebus software. This sorting was kept
constant in the second day.

Following [13], the EMG envelopes in each channel were
extracted by highpass filtering at 50 Hz, rectification, and
lowpass filtering at 10 Hz. During the task, the neural data
and the EMG activity were recorded simultaneously along
with task relevant sensor signals, e.g. pressure. Both spike
recordings and EMG signals were downsampled to appropriate
bin sizes (2, 5, 10, and 20 ms) for further analysis. For dataset
II, we also considered bin sizes of 50 ms.

III. Results

We tested the proposed point process-based filtering ap-
proach and compared it with the Wiener cascade filter in
which the length of the impulse response was set to 250 ms.
In this paper both prediction and stability (over time) rates
are reported. In computing the prediction rates for each data
file, 20 fold cross-validation was performed, in which 19 folds
were used for training the model and one fold for testing.
Tests were repeated 20 times, each with a different test fold.
All reports of prediction rates are based on evaluations of the
test data sets only. However, for evaluating the stability of
the proposed predictor, the model was fitted in one data file
and tested on another data file - from the same or the second
day in dataset I and from the second day in dataset II. Mean
prediction rates are presented in terms of the mean coefficient
of determination R2 and mean squared error (MS E) and either
standard deviation (SD) or standard error of the mean (SEM)
where appropriate.

For all statistical analysis (otherwise specified), we tested
the main effects of the bin size and predictor type by a 4 × 4
repeated measures ANOVA in which the degrees of freedom
were corrected using the Greenhouse-Geisser method when
required. We also report bonferroni corrected post-hoc pair-
wise comparison results.

A. Dataset I

We first verify the GLM-point process modeling. Then,
we present the prediction results of Wiener cascade and
constrained Kalman-based filters. In the constrained Kalman
filter case, two cases are investigated: first in equation (12),
only the first two terms are considered, that is no firing
history or neural coupling components hi,i′, j were included.
This simplifies equation (12) to

λi
k = f

(
bi +B

T
i qk
)
. (15)

In a simplified constrained Kalman filter (SCKF) setting,
λi

k is estimated by equation (15). In the full constrained
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the probability of observing a spike for each bin. The assumed exponential
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Fig. 2. An example of actual (black) and predicted EMG signals using
the Wiener cascade filter (blue) and the simplified constrained Kalamn filter
(SCKF, red) during the ball-grip task. The R2 values were calculated from a
40 second segment of data in this example.

Kalman filter (FCKF) setting the history and neural coupling
components are also taken into account and hence equation
(12) is used to estimate λi

k. We will report the effects of the
bin size, and the delay between spike discharge and EMG on
the prediction performance. Finally, we will test the stability
of the SCKF and FCKF methods across different recordings
sessions and compare it to the Wiener cascade filter.

1) GLM Validity: In the GLM, we used an exponential
non-linearity to estimate the instantaneous spike rate of each
recorded unit, equations (12 and 15). We assessed the ade-
quacy of the exponential function f by comparison with the
reconstructed non-linearity. The reconstructed non-linearity
was computed using the raw distribution of model inputs
and the observed spike responses. The reconstructions were
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reasonably log-linear. Fig. 1 shows the results for one typical
motor cortex cell. In this example, λi

k was estimated using the
simplified model in eq. (15) used previously in [22], [33], and
many others, and serves to verify the model.

2) Prediction rates: Fig. 2 depicts an example for the
predicted EMG signals using both the Wiener cascade filter
and the SCKF. In this example, EMG envelopes were better
predicted using the SCKF (eq. (15)). The SCKF predictions
were also smoother than the Wiener cascade filter predictions.

We computed the prediction accuracy of the simplified and
full constrained Kalman filter to that of the Wiener cascade
filter for four bin sizes within each data file (Fig. 3). On
average, the SCKF performance was about 8% higher than the
Wiener cascade filter. The prediction difference between the
SCKF and the Wiener filter when the bin size was 2 ms was
marginally significant (paired t-test: t11 = 2.13, p = 0.056). In
order to incorporate the history and coupling components for
FCKF, we examined the inter-spike interval (ISI) histograms
and empirically concluded that a history window of 20 ms
should accommodate enough spikes for each neuron so that
the GLM fit would converge. Incorporating the full GLM
model further increased the prediction scores by about 4%
on average. In the smaller bin sizes, the FCKF predicted the
EMG activity more accurately than did the SCKF (e.g. 2 ms
bin size: paired t-test: t11 = 4.28, p = 0.001). However this
difference diminished when the bin size was 20 ms (paired t-
test: t11 = 0.65, p = 0.52). The performance of the constrained
Kalman filter estimators increased monotonically when bin
size increased.

3) Bin size, delay, and kernel width: We studied the effect
of bin size (4 bin-sizes) and EMG delay lag (3 lags: 20, 40,
and 60 ms) on the prediction accuracy of the SCKF using non-
overlapping bins. The EMG prediction accuracy was improved
by increasing the bin size from 2 ms to 20 ms, Fig. 3. The
results for 40 ms delay were slightly higher than the 20 ms
and 60 ms delays for all bin sizes.

For the FCKF, we used 20 ms and 40 ms wide rectangular
kernels (hi,i′, j = 1) in (12) and two delay values of 20 ms or 40
ms. For instance, when the bin size and the delay were respec-
tively 5 ms and 40 ms, the rectangular kernel window covered
8 previous data points. Including the history and coupling
components improved the prediction results by about 4% on
average, when compared to the no kernel (SCKF) condition, at
smaller bin sizes of 2 ms and 5 ms. Such an improvement was
statistically significant for almost all different configurations.
For instance, at 5 ms bin size and 20 ms delay, FCKF (40
ms kernel size) and SCKF prediction scores were 59% and
53%; a 2-tailed t-test across muscles confirms the significance
t11 = 4.56, p = 0.001. Such differences diminished with larger
bin sizes.

The size of the bins did not influence the performance
of the Wiener cascade filter (see Fig. 3). The SCKF and
FCKF prediction rates improved monotonically when bin size
increase. For large bins the effect of the kernel was smeared
irrespective of its size and the SCKF and FCKF results were
comparable.

4) Stability: We analyzed the prediction stability of both
the Wiener cascade and the constrained Kalman filter over
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SCKF − 40 ms
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Fig. 3. Summary of EMG prediction accuracy with the Wiener cascade,
simplified (the generalized linear model without the coupling and history
components: eq. (15)), and full constrained Kalman filters (the generalized
linear model with the coupling and history components: eq. (12)). Predictions
(R2 ±S EM) accounted for 49-65% of the variance of the EMGs. The Wiener
cascade filter was insensitive to the bin size. However, the prediction accuracy
of the constrained Kalman filter improved for larger bin sizes. Including the
history and coupling component terms in the GLM improved the prediction
rates further. The time delay was set to 40 ms.
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Fig. 4. Summary of EMG prediction stability rates (R2±S EM) using Wiener
cascade filter, SCKF (time delay: 20 ms and 40 ms), and FCKF (time delay:
40 ms time delay and kernel width: 40 ms). Predictions accounted for about
55% of the actual EMGs using SCKF, (eq. (15)), and about 45% using FCKF,
(eq. (12)). Prediction rates obtained by SCKF were higher than that of the
Wiener cascade filter by about 12% on average.

time using the six data files of dataset I in terms of both
R2 and MS E. We used the filter parameters determined from
one data file to predict EMG signals from the remaining data
files from either the same or a different day. The predictions
used only those neurons that were common to both data files.
This included approximately 80-90% of units. The process was
carried out for bin sizes of 2 ms, 5 ms, 10 ms, and 20 ms, delay
values of 20 and 40 ms. The kernel width for FCKF was set to
40 ms. Fig. 4 and Fig. 5 report the EMG prediction accuracy
scores (R2 and MS E, respectively) using four different bin
sizes.

Fig. 4 shows that the SCKF predictions accounted on aver-
age 55% of the actual EMGs which was on average 15% more
accurate than the Wiener cascade filter. A repeated measures



SUBMITTED TO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 6

5 ms 10 ms

Bin Size

20 ms2 ms

Wiener cascade

SCKF − 20 ms
SCKF − 40 ms
FCKF − 40 ms

M
S

E

0

2

4

6

x10
3

Fig. 5. Summary of EMG prediction stability scores (MS E ± S EM) using
Wiener cascade filter, SCKF (time delay: 20 ms and 40 ms), and FCKF (time
delay: 40 ms time delay and kernel width: 40 ms). The EMG predictions
using the proposed filters were closer to the actual EMGs (smaller MSEs)
than the predictions of the Wiener cascade filter.
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Fig. 6. Summary of EMG prediction and stability rates (R2 ± S EM) with
the Wiener cascade filter and SCKF (eq. (15)) for the large-file dataset. The
average R2 and their standard error of means for Dataset II are reported.
Wiener cascade filter and SCKF results were comparable when large training
data was used. Only when the bin sizes were 10 ms and 20 ms the difference
in prediction rates were statistically significant, shown with asterisk.

ANOVA was used to test the statistical significance of the
differences in prediction rates in terms of R2. Tests confirmed
the main effect of the predictor (F1.19,13.08 = 62.67, p < 10−4).
However, the bin size did not influence the prediction scores
(F1.07,18.75 = 1.22, p = 0.31. Post-hoc analysis revealed rates
achieved by SCKF (delay 20 ms), SCKF (delay 40 ms), and
FCKF (delay 40 ms) were higher than those scored by the
Wiener cascade filter (p < 10−4, p < 10−4, and p = 0.01,
respectively).

Fig. 5 shows that the MS Es between the predicted EMGs
and actual EMGs were smaller using the proposed point-
process filters specially for larger bin sizes. We used a 4 × 2
ANOVA repeated measures to test the statistical significance of
the differences in prediction stability in terms of MS E. Tests
revealed that the main effects of type of predictor and bin-
size were statistically significant (F1.74,19.21 = 5.22, p = 0.01
and F1.25,13.84 = 21.36, p < 10−4, respectively). Bonferroni-

corrected post-hoc analysis showed the predictions of the
SCKF (delay 40 ms) were marginally more accurate than that
of the Wiener cascade filter (p = 0.08).

B. Dataset II

We repeated the analysis for dataset II considering bin sizes
of 5, 10, 20, and 50 ms. The mean prediction and stability rates
are depicted in Fig. 6. Results show that for this long dataset,
prediction rates obtained by the Wiener and Kalman-based
filters were comparable (4 × 2 ANOVA repeated measures,
n=12, main effect of predictor F1,11 = 0, p = 0.98).

We compared the stability of the Wiener cascade filter and
the SCKF (delay 40 ms). When the bin size was 10 ms or
20 ms bin sizes, the SCKF prediction performance was higher
than that of the Wiener cascade filter as confirmed by paired
t-tests across muscles: at 10 ms t11 = 4.65, p = 0.001 and at
20 ms t11 = 2.69, p = 0.021. Otherwise, the Wiener cascade
filter performance matched that of the SCKF.

IV. Concluding Remarks

The ultimate motivation behind this work is to decode
attempted muscle activity in paralyzed patients from motor
cortical activity and to utilize the decoded signals as a mean
to restore motor deficit. To that end, we proposed a non-
negatively-constrained point process filter for the prediction
of EMG signals from multi-channel spike recordings in M1.
We employed the generalized linear model to estimate the
instantaneous firing rate of the cells as a function of the
EMG activity. This model provided reasonable characteri-
zations between neural activity and motor behavior. Using
an optimization interpretation of the conventional Kalman
and point-process filters, we accommodated the state non-
negativity constraint of the EMG envelopes by the log-barrier
method. In the constrained point process filtering setting,
the neural non-linear, non-Gaussian, spiking pattern and the
inherent non-negative nature of the EMG envelopes were
explicitly modeled.

We showed that the GLM could be readily fitted using a few
minutes of training data and the constrained point process filter
provided reasonably accurate estimates of EMG activity given
the instantaneous firing rates of a population of cells in M1.
The prediction rates achieved for the SCKF and FCKF were
higher than those of the Wiener cascade filter by about 8% and
12%, respectively. In the stability tests, the predictions of the
SCKF were about 12% more stable than those of the Wiener
cascade filter. The stability scores achieved by the FCKF were
on average 5% higher than those given by the Wiener cascade
filter. When the amount of training data increased, using the
longer data files of dataset II, the constrained point process
filter did not achieve consistently better performance rates than
the Wiener cascade filter.

The size of the filter parameter space relative to the amount
of training data is an important factor in fitting both Wiener-
and GLM-based models. The improved performance of the
proposed constrained point process filter when compared to
the Wiener cascade filter may be due to its smaller number
of parameters and compact Bayesian nature. For instance,
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for prediction of M = 12 EMGs from the activity of C =
100 cells using the proposed filters, one needs to compute
C × (M + 1) + 2M2 = 1588 parameters (including bi and Bi

for each neuron, A, and Cq). However, where T denotes the
length of the impulse response (in bin), for the same setting the
Wiener cascade filter requires T ×C ×M = 14400 parameters
(T = 12 for a bin size of 20 ms and a filter length of 240 ms).
Therefore, the Wiener cascade filters suffers dramatically from
substantial model overfitting if the training data are limited.
It is often recommended to regularize the fitting process by
taking into account prior mathematical (e.g. sparsity of the
filter) constraints [34]. This can improve the performance of
the model when the training data are limited and the feature
space is high-dimensional [35] by trading prediction accuracy
on the training set for a smoother prediction surface. However,
we believe that any gains achieved through the addition of a
regularization component to the Wiener-based decoders would
transfer, at least partially, to systems using the proposed filters.
For instance, in our full GLM setting, for simplicity, we
used rectangular history kernels (hi,i′, j) and that led to lower
performance of the FCKF when compared to the SCKF in
the stability test. However, a physiologically-inspired prior for
the model would be the temporal smoothness of the history
kernels. For example, the raised cosine kernels can provide a
fine temporal structure near the time of a spike and a coarse
temporal structure at longer delays using a limited number of
parameters [22].

In a real-time implementation of the constrained point
process filter, the block-tridiagonal structure of H implies that
Q̂ = −H−1∇ may readily be solved in O(K) time, e.g., by
block-Gaussian elimination [36]. One should note that there
is no need to compute H−1 explicitly. The matrix formulation
of the Kalman filter is equivalent, both mathematically and in
terms of computational complexity, to the forward-backward
method. Therefore, in contrast to the original Kalman filter, the
computation of qk requires at least a partial forward-backward
sweep making the real-time implementation complicated. A
potential solution to this problem is suggested in [37]. In
addition, in the proposed constrained point process filter, the
computational cost incurred in updating H, ∇ in each iteration
of the Newton optimization and the best tuning of ϵ in equation
(14) have to be taken into account. The Newton’s optimization
method converges in only one step [31] for the original linear-
Gaussian setting, but for the point process observations, the
optimum q̂1:K is obtained after a few iterations - still of order
O(K) time computations. To compute q̂MAP

1:K , we initiated the
optimization with ϵ = 0.2 and after few iterations halved
the ϵ in an outer loop. The iteration process stopped if
the improvement in the log-likelihood was smaller than an
empirical threshold. Further work will be necessary to develop
a real-time implementation of the constrained point process
filter proposed here.

An alternative way to decrease the computational cost of
our algorithm is to reduce the dimension of the observation
vector by ranking the neurons with respect to the information
they provide and discarding those that are not influential. One
such iterative ranking method has been proposed, but it is itself
rather complex computationally [32].

Despite the apparent success of the biomimetic BMI, the
requirement for training data remains a challenge for ultimate
clinical applications with paralysed patients. Motor imagery
may provide a suitable substitute for actual movement in
patients suffering from cervical spinal cord injury. Hochberg
et al. [38] showed that the imagined limb motions modulate
neural firing discharge in M1. In their experiment, the para-
lyzed subject was asked to imagine tracking a cursor on the
computer screen that was moved by a technician through a
succession of randomly positioned targets - only the cursor
and targets were visible on the screen. A linear filter decoder
was computed from four minutes of data collected during
these imagined movements. Subsequently, the subject used this
initial decoder to control movement of a neural cursor. Data
generated during these movements were used to update the
linear filter estimate. Related approaches have also been used
with monkey subjects [39]–[41].

The problem is more complicated in the case of decod-
ing EMG signals, as the idea of imagining the activity of
individual muscles is much less intuitive than imagining the
kinematics of hand movement. The problem is exacerbated by
the high degree of musculoskeletal redundancy of the arm.
There are unlimited combinations of muscles by which the
same motor output at the fingertips may be achieved which
leads to very slow convergence of a decoder and potentially
unstable performance. However, muscles exhibit rather stereo-
typed EMG activity patterns across subjects [42]. Therefore,
it might be possible to train an initial filter using “template”
EMGs collected from able-bodied subjects during execution of
the movements that the patient observes. This initial decoder
can then be improved by further mathematical optimization or
reinforced via training. Implementing this procedure may be
challenging in a clinical environment where collecting enough
high quality training data is challenging. In this case, the
proposed decoder may play an important role by providing
better performance despite limited training data.

In conclusion, we have shown that the constrained point
process-based models improve prediction of the envelope of
EMG signals from multi-channel neuronal firing rate records
with a better stability when the training data are limited.
Improvement in the prediction of EMG signals from neural
recordings by appropriately regularized Wiener- and Kalman-
based filters remains to be studied further.

Appendix I

In a linear-Gaussian setting, (q1:K , y1:K) in eq. (2) forms a
jointly Gaussian random variable, and therefore the conditional
expectation of the hidden state path q1:K given the observations
y1:K , E(q1:K |y1:K) remains Gaussian. Coincidence of the mean
and mode of a Gaussian distribution implies that E(q1:K |y1:K)
is equal to the maximum a posteriori (MAP) estimate of
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p(q1:K |y1:K)

q̂1:K = arg max
q1:K

p(q1:K |y1:K) = arg max
q1:K

log p(q1:K , y1:K)

= arg max
q1:K

(
log p(q1) +

K∑
k=2

log p(qk |qk−1)

+

K∑
k=1

log p(yk |qk)
)

= arg max
q1:K

[
− 1

2

(
(q1 − E(q1))T C−1

q1
(q1 − E(q1))

+

K∑
k=2

(qk − Aqk−1)T C−1
q (qk − Aqk−1)

+

K∑
k=1

(yk − Bqk)T Cy
−1(qk − Bqk)

)]
. (16)

The right-hand-side here is a simple quadratic function in
q1:K . Since p(q1:K |y1:K) is Gaussian, that is log p(q1:K |y1:K)
is quadratic, E(q1:K |y1:K) may be solved by an unconstrained
quadratic program in q1:K as in equation (4) where the Hessian
H matrix is a block-tridiagonal matrix of form

H =



D1 R1,2 0 · · · · · · 0

R2,1 D2 R2,3 0 · · ·
...

0 Rk+1,k Dk Rk,k+1 · · ·
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · DK−1,K−1 RK−1,K
0 · · · · · · · · · RK,K−1 DK


(17)

and its elements may be computed (for k = 1, 2, · · · ,K) with

Dk =
∂2

∂q2
k

log p(yk |qk) +
∂2

∂q2
k

log p(qk |qk−1)

+
∂2

∂q2
k

log p(qk+1|qk),

Rk,k+1 = RT
k+1,k =

∂2

∂qk∂qk+1
log p(qk+1|qk). (18)

For instance, D1 = −
(
C−1

q1
+ AT CqA + BT C−1

y

)
and R2,1 =

C−1
q AT . In (4), ∇ is a vector in which the i-th element is

∇k =
∂ log p(q1:K |y1:K)

∂qk

= −C−1
q (qk − Aqk−1) + AT C−1

q (qk+1 − Aqk)

+BT C−1
y (yk − Bqk). (19)

Appendix II
The first and second derivatives of log p(yk |qk) are

∂ log p(yk |qk)
∂qk

=

C∑
i=1

(
△ N i

k − λi
k △ tk

)
Bi, (20)

∂2 log p(yk |qk)
∂q2

k

=

C∑
i=1

−λi
k △ tkBT

i Bi. (21)

Equation (21) demonstrates directly that log p(yk |qk) is con-
cave since λi

k ≥ 0.

Acknowledgements

The authors gratefully acknowledge Prof. Sara Solla at
Northwestern University and Dr. Andrew Fagg at The Uni-
versity of Oklahoma for fruitful discussions.

References

[1] A. H. Fagg, N. G. Hatsopoulos, V. de Lafuente, K. A. Moxon, S. Nemati,
J. M. Rebesco, R. Romo, S. A. Solla, J. Reimer, D. Tkach, E. A.
Pohlmeyer, and L. E. Miller, “Biomimetic brain machine interfaces for
the control of movement,” J. Neurosci., vol. 27, no. 44, pp. 11842–
11846, 2007.

[2] K. Nazarpour and A. Jackson, “Biomimetic and biofeedback approaches
for brain machine interface,” in Proc. APSIPA ASC, Biopolis, Singapore,
2010.

[3] A. B. Schwartz, “Direct cortical representation of drawing,” Science,
vol. 265, pp. 540–542, 1994.

[4] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and
J. P. Donoghue, “Instant neural control of a movement signal,” Nature,
vol. 416, pp. 141–142, 2008.

[5] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach,
J. K. Chapin, J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A.
Nicolelis, “Real-time prediction of hand trajectory by ensembles of
cortical neurons in primates,” Nature, vol. 408, pp. 361–365, 2000.

[6] A. P. Georgopoulos, J. Ashe, N. Smyrnis, and M. Taira, “The motor
cortex and the coding of force,” Science, vol. 256, pp. 1692–1695, 1992.

[7] E. V. Evarts, “Relation of pyramidal tract activity to force exerted during
volumeuntary movement,” J. Neurophysiol., vol. 31, pp. 14–27, 1968.

[8] M. M. Morrow, L. R. Jordan, and L. E. Miller, “Direct comparison of
the task-dependent discharge of M1 in hand space and muscle space,”
J. Neurophysiol., vol. 97, pp. 1786–1798, 2007.

[9] L. E. Sergio, C. Hamel-Paquet, and J. F. Kalaska, “Motor cortex neural
correlates of output kinematics and kinetics during isometric-force and
arm-reaching tasks,” J. Neurophysiol., vol. 94, pp. 2353–2378, 2005.

[10] Z. Rivera-Alvidrez, R. S. Kalmar, S. I. Ryu, and K. V. Shenoy, “Low
dimensional neural features predict muscle emg signals,” in Proc. IEEE
EMBC, pp. 6027–6033, 2010.

[11] B. Townsend, L. Paninski, and R. Lemon, “Linear encoding of muscle
activity in primary motor cortex and cerebellum,” J. Neurophys., vol. 96,
pp. 2578–2592, 2006.

[12] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M.
Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. L.
Nicolelis, “Learning to control a brainmachine interface for reaching
and grasping by primates,” PLoS Biol., vol. 1, p. e42, 2003.

[13] E. A. Pohlmeyer, S. A. Solla, E. J. Perreault, and L. E. Miller,
“Prediction of upper limb muscle activity from motor cortical discharge
during reaching,” J. Neural Eng., vol. 4, pp. 369–379, 2007.

[14] E. R. Oby, C. Ethier, M. Bauman, E. J. Perreault, J. Ko, and L. E. Miller,
Getting a grip on spinal cord injury: A novel application of a Brain
Machine Interface in Statistical Signal Processing for Neuroscience and
Neurotechnology, pp. 369–406. Academic Press, Elsevier, 2010.

[15] E. A. Pohlmeyer, E. R. Oby, E. J. Perreault, S. A. Solla, K. L. Kilgore,
R. F. Kirsch, and L. E. Miller, “Toward the restoration of hand use to a
paralyzed monkey: Brain-controlled functional electrical stimulation of
forearm muscles,” PLoS ONE, vol. 4, pp. 1–8, 2009.

[16] I. H. Stevenson, J. M. Rebesco, L. E. Miller, and K. P. Körding, “Infer-
ring functional connections between neurons,” Curr. Opin. NeuroBiol.,
vol. 18, pp. 582–588, 2008.

[17] W. Wu, Y. Gao, E. Bienestock, J. P. Donoghue, and M. J. Black,
“Bayesian papulation decoding of motor cortical activity using a Kalman
filter,” Neural Computation, vol. 18, no. 1, pp. 80–118, 2006.

[18] J. E. Kulkarni and L. Paninski, “State-space decoding of goal-directred
movements,” IEEE Sig. Process. Mag., vol. 25, pp. 78–86, 2008.

[19] W. Wu, J. E. Kulkarni, N. G. Hatsopoulos, and L. Paninski, “Neural
decoding of hand motion using a linear state-space model with hidden
states,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17, no. 4, pp. 370–
378, 2009.

[20] V. Lawhern, W. Wu, N. Hatsopoulos, and L. Paninski, “Population
decoding of motor cortical activity using a generalized linear model
with hidden states,” J. Neurosci. Meth., vol. 189, pp. 267–280, 2010.

[21] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N.
Brown, “A point process framework for relating neural spiking activity
to spiking history, neural ensemble, and extrinsic covariate effects,” J.
Neurophysiol, vol. 93, pp. 1074–1089, 2005.



SUBMITTED TO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 9

[22] J. Pillow, J. Shlens, L. Paninski, A. Sher, A. Litke, E. Chichilnisky, and
E. Simoncelli, “Spatiotemporal correlations and visual signaling in a
complete neuronal population,” Nature, vol. 454, pp. 995–999, 2008.

[23] J. Durbin and S. Koopman, Time Series Analysis by State Space Method.
Oxford University Press, 2001.

[24] L. Fahrmeir and G. Tutz, Multivariate Statistical Modelling Based on
Generalized Linear Models. Springer, 1994.

[25] A. E. Brockwell, A. L. Rojas, and R. E. Kass, “Recursive bayesian
decoding of motor cortical signals by particle filtering,” J. Neurophysiol.,
vol. 91, pp. 1899–1907, 2004.

[26] S. Koyama and L. Paninski, “Efficient computation of the maximum a
posteriori path and parameter estimation in integrate-and-fire and more
general state-space models,” J. Comput. Neurosci., vol. 29, pp. 89–105,
2009.

[27] L. Paninski, “Maximum likelihood estimation of cascade point-process
neural encoding models,” Network:Computations in Neural Sys., vol. 15,
pp. 243–262, 2004.

[28] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. SIAM Publications, Philadel-
phia, 1996.

[29] L. Paninski, M. R. Fellows, N. G. Hatsopoulos, and J. P. Donoghue,
“Spatiotemporal tuning of motor cortical neurons for hand position and
velocity,” J. Neurophusiol., vol. 91, pp. 515–532, 2004.

[30] B. M. Bella, J. V. Burkeb, and G. Pillonetto, “An inequality constrained
nonlinear KalmanBucy smoother by interior point likelihood maximiza-
tion,” Automatica, vol. 45, pp. 25–33, 2009.

[31] L. Paninski, Y. Ahmadian, D. G. Ferreira, S. Koyama, K. Rahnama Rad,
M. Vidne, J. Vogelstein, and W. Wu, “A new look at state-space models
for neural data,” J. Comput. Neurosci., vol. 29, pp. 107–126, 2009.

[32] D. T. Westwick, E. A. Pohlmeyer, S. A. Solla, L. E. Miller, and E. J.
Perreault, “Identification of multiple-input systems with highly coupled
inputs: application to EMG prediction from multiple intracortical elec-
trodes,” Neural Computation, vol. 18, no. 2, pp. 329–355, 2006.

[33] E. J. Chichilnisky, “A simple white noise analysis of neuronal light
responses,” Network, vol. 12, pp. 199–213, 2001.

[34] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity
and smoothness via the fused lasso,” J. Roy. Soc. B, vol. 67, pp. 91–108,
2005.

[35] A. Björck, Numerical methods for least squares problems. SIAM, 1996.
[36] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical

recipes in C. Cambridge University Press, 1992.
[37] Y. Ahmadian, A. M. Packer, R. Yuste, and L. Paninski, “Designing opti-

mal stimuli to control neuronal spike timing,” 2011. Under review: avail-
able online in http://www.stat.columbia.edu/∼liam/research/pubs/yashar-
optcont.pdf.

[38] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh,
A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue,
“Neuronal ensemble control of prosthetic devices by a human with
tetraplegia,” Nature, vol. 442(7099), pp. 164–171, 2006.

[39] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B.
Schwartz, “Cortical control of a prosthetic arm for self-feeding,” Nature,
vol. 453, pp. 1098–1101, 2008.

[40] R. Wahnoun, J. He, and S. I. H. Tillery, “Selection and parameterization
of cortical neurons for neuroprosthetic control,” J. Neural Eng., vol. 3,
pp. 162–171, 2006.

[41] D. Tkach, J. Reimer, and N. Hatsopoulos, “Congruent activity during
action and action observation in motor cortex,” J. Neurosci., vol. 27,
pp. 13241–13250, 2007.

[42] M. Hallett, B. T. Shahani, and R. R. Young, “EMG analysis of
stereotyped voluntary movements in man,” J. Neurol. Neurosurg. Psych.,
vol. 38, pp. 1154–1162, 1975.


