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Motor Control, Biological and Theoretical3
4 R. C. Miall

5 Introduction

6 Biological motor control can be characterized as a problem of con-
7 trolling nonlinear, unreliable systems whose states are monitored
8 with slow and sometimes low-quality sensors. In response to
9 changing sensory inputs, internal goals, or motor errors, the motor
10 system must solve several basic problems: selection of an appro-
11 priate action and transformation of control signals from sensory to
12 motor coordinate frameworks; coordination of the selected move-
13 ment with other ongoing behaviors and with postural reflexes; and
14 monitoring the movement to ensure its accuracy. These stages may
15 be interlinked, so that separation of any one particular problem into
16 these individual stages may not be possible. This article describes
17 some of the ways we think that biological motor systems solve
18 these tasks, based on principles (and terminology) whose origins
19 are in engineering and cybernetics. The field of cybernetics has
20 developed from Norbert Wiener’s initial ideas on communication
21 and control theory in complex mechanical and biological systems,
22 which focused on feedback mechanisms.
23 A motor control system acts by sending motor commands to a
24 controlled object, often called the “plant,” which in turn acts on its
25 local environment (Figure 1). The plant or the environment has one
26 or more variables that the motor system attempts to regulate, either
27 to maintain them at a steady reference level in the face of distur-
28 bances (a “regulator”) or to follow some changing reference value
29 (a “controller”). The motor control system may make use of sen-
30 sory signals from the environment, from its reference inputs, and
31 from the plant to determine what actions are required. Sensory
32 inputs from the plant can provide information about the state of
33 the controlled object. Here, the state can be considered as all rele-
34 vant variables that adequately describe the controlled object. But
35 note that the sensory inputs to the controller do not necessarily
36 provide direct measures of the true state of the system: They may
37 be inaccurate or delayed, as discussed later. If controller output is
38 based on signals that are unaffected by the plant output, it is said
39 to be a feedforward controller: The feedforward control path is the
40 thick line from left to right in Figure 1A1, which requires no return
41 signals. If the controller output is instead based on a comparison
42 between the reference and the controlled variables, it is a feedback
43 controller (Figure 1B1): The control pathway is a closed loop. One
44 can add more complex control strategies to these simple systems
45 (Figure 1A2, 1B2), as described in more detail below.
46 The advantage of feedforward control is that it can, in the ideal
47 case, give perfect performance with no error between the reference
48 and the controlled variable. The main disadvantages for biological
49 systems include the potential difficulty in generating an accurate
50 controller for a complex system and the lack of error corrections.
51 If the controller is not accurate, if the plant is unreliable, or if
52 unexpected external disturbances occur, output errors go un-
53 checked. Since no biological system can be both perfectly accurate
54 and perfectly free of external disturbances, error correction is usu-
55 ally necessary. In contrast, the major advantage of negative feed-
56 back control lies in its very simple, robust strategy. The controller
57 drives the plant so as to cancel the feedback error signaled by the
58 comparator. Because it constantly seeks to cancel the error, it op-
59 erates well, even without exact knowledge of the controlled object
60 and despite internal or external disturbances. But feedback control
61 strategies also have disadvantages: Errors cannot be avoided but
62 must occur and be corrected, and feedback control—especially in
63 biological systems—tends to be slow.

64 Feedback Control

65 The design criteria for negative feedback control are dominated by
66 the closed-loop gain. Gain is defined as the ratio of a system’s
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67 output to its input. For a linear servo controller, the gain should be
68 close to unity, so that a given input (the reference value) evokes
69 an output of almost equal magnitude. In a feedback circuit (Figure
70 1B1), one can define both open-loop and closed-loop gains. The
71 open-loop gain Ko is given by the ratio of the response to the error;
72 it gives the response expected if the feedback path shown in Figure
73 1B1 is cut, thus opening the loop. The closed-loop gain Kc is given
74 by the ratio of response to reference amplitudes. The closed-loop
75 gain Kc is determined by the open-loop gain where Kc � Ko/(1 �
76 Ko). For ideal control, Kc should be unity under all conditions; thus
77 the open-loop gain Ko should be as high as possible, ensuring that
78 Kc approaches unity. In practice, Ko is usually frequency dependent
79 and can never reach infinity; hence Kc is also frequency dependent
80 and less than unity.
81 The design of nonlinear and multidimensional feedback systems
82 is beyond the scope of this article, except to note that, in many
83 instances, complex control problems can be simplified and linear-
84 ized around the current state of the system. This may be particularly
85 true of biological systems, in which control is often only
86 approximate.
87 Notice that the comparison of the reference value with the con-
88 trolled variable to give an error signal (Figure 1B1) is affected by
89 the dynamics of the motor control and sensory systems. When a
90 command is issued by the controller, its effects are not immediately
91 apparent to the comparator, but are delayed by the plant and sensor
92 dynamics and by transport delays on both the forward and feedback
93 paths. In biological systems, where sensor delays are inevitable,
94 the comparison is always out of date. Hence in any feedback system
95 there will be a frequency at which these delays combine to impart
96 a 180� phase lag. The open-loop gain Ko at that frequency now only
97 needs to be unity (instead of very large) to make Kc � 1.0, forcing
98 the system into instability. Any small error or disturbance will be
99 overcorrected and result in even bigger errors, leading to yet bigger
100 corrections. Human examples of instability are indeed seen when
101 control delays are artificially increased in man-machine interfaces
102 (Miall and Wolpert, 1996

AQ�1
) or as a result of increased neural trans-

103 port delays in neuropathies such as multiple sclerosis.

104 Physiological Feedback Circuits

105 Although feedback control circuits are found throughout physiol-
106 ogy, let us consider just two examples from vertebrate motor sys-
107 tems. The major tension-producing fibers of the vertebrate muscle,
108 known as extrafusal fibers, contract following excitation by alpha
109 motor neurons. However, the amount of tension produced by the
110 muscle in response to a motor command varies with the length of
111 the muscle, its speed of contraction, level of fatigue, and so on.
112 The muscles are therefore provided with numerous sensory struc-
113 tures, muscle spindles, that signal back to the CNS the length and
114 rate of stretch of the muscle. Spindles are complex sensorimotor
115 structures combining contractile elements (intrafusal fibers, excited
116 by specialized gamma motor neurons) with a central stretch-
117 sensitive region. Their axons project onto alpha motor neurons in
118 the spinal cord which serve the same muscle and synergistic mus-
119 cles. This circuit (the stretch reflex) is a feedback controller for
120 muscle length. If the muscle is stretched, the spindles respond,
121 exciting the alpha motor neurons, and the resulting reflex contrac-
122 tion of the extrafusal fibers restores the muscle to its original length,
123 silencing the spindles again. Thus the spindles signal a deviation
124 from their regulated length, and the controller (the alpha motor
125 neuron) acts to cancel the error. The muscles also contain Golgi
126 tendon organs (GTOs), which are attached to the tendons of muscle
127 and respond to increased tension in the tendon. They excite inter-
128 neurons which inhibit motor neurons of that muscle and other mus-
129 cles acting around the same joint, and also act in a feedback man-
130 ner. If muscle tension increases due to an external load, for
131 example, the GTOs are activated and, via the inhibitory interneu-
132 ron, inhibit the motor neurons, causing the muscle to relax. This
133 reduces tension, and thus the negative feedback loop serves to
134 maintain a controlled level of tension. This description of the spin-
135 dle and GTO is oversimplified, ignoring aspects such as control of
136 muscle stretch velocity, but emphasizes their basic control prop-
137 erties. Together, they act to maintain a muscle in its current state:
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138 Changes in length or in tension will be automatically opposed.

139 Feedforward Control

140 Feedforward control schemes may be grouped as those based on
141 direct control and those based on indirect control using internal
142 models. Here, direct control means control without explicit knowl-
143 edge of the behavior of the plant (see REINFORCEMENT LEARNING

144 IN MOTOR CONTROL). In practice, a controller that can store and
145 issue appropriate motor programs must have implicitly, if not ex-
146 plicitly, captured knowledge of the plant. Hence feedforward con-
147 trollers must be matched to the properties of the plant they control.
148 As a physiological example, the equilibrium point hypothesis (see
149 EQUILIBRIUM POINT HYPOTHESIS) makes use of the spring-like
150 properties of muscles. For any set of springs pulling across the
151 multiple joints of a limb, there will be a stable position into which
152 the limb passively settle. Thus, the CNS could define the “end-
153 point” muscle tensions and the limb would move to the desired
154 position without the controller’s knowing either its starting position
155 or its behavior during the movement. An alternative direct scheme
156 is to generate the appropriate commands—a temporal sequence of
157 required changes in muscle force, acquired and stored as a motor
158 program—but again without any explicit knowledge of the plant.
159 In the limit one could use a memorized lookup table to store ap-
160 propriate motor commands for each input–output pair. However,
161 the memory demands grow explosively if a motor command is
162 stored for every possible pairing. Some form of generalization is
163 assumed to avoid this problem (see SENSORIMOTOR LEARNING)
164 such that a coarse-grained representation is achieved, with
165 interpolation.

166 Physiological Feedforward Control

167 Muscle spindles and GTOs are used to ensure that actions occur as
168 planned. By sending motor commands both to the alpha and to the
169 gamma motor neurons, both the force-producing extrafusal fibers
170 of the muscle and the much weaker intrafusal fibers of the spindle
171 co-contract. If the joint fails to move fast enough owing to an un-
172 expected load, the spindle contractile elements shorten within the
173 main muscle, the stretch-sensitive sensory region is stimulated, and
174 additional excitatory drive is reflexively added to the spinal alpha
175 motor neurons to overcome the load. The original position control
176 theory proposed by Merton has had to be supplemented by tension
177 and velocity control; but this simple description, while incomplete,
178 highlights the main principles. Note that by co-activating alpha and
179 gamma motor neurons, the reference values of the feedback circuit
180 described earlier are predictively modified. Thus for the supraspinal
181 centers driving the movement, the spinal circuits can be treated as
182 a feedforward controller, autonomously regulating the muscles
183 without the need for feedback to these higher centers. Of course,
184 if errors become large, cortical control can be invoked. This dem-
185 onstrates an important principle: Biological motor circuits are often
186 hierarchical, with lower levels regularizing the behavior of the con-
187 trolled object and higher systems providing increasingly indirect
188 control (Loeb, Brown, and Cheng, 1999).
189 Another example of feedforward control is found in the oculo-
190 motor system (see COLLICULAR VISUOMOTOR TRANSFORMATIONS

191 FOR SACCADES). Human eye muscles have muscle spindles, but
192 they do not seem to have a functional stretch reflex: Passive move-
193 ments of the eyes are not reflexively adjusted, and even seem to be
194 ignored. As Helmholtz noted, if one pushes on the side of one’s
195 own eye, the resulting retinal movement is reported by the visual
196 system as movement of the external world. The reason the oculo-
197 motor system may be able to operate in feedforward mode is that
198 the mechanical load (the spherical eyeball) is relatively constant,
199 unaffected by external weights or gravity, and is therefore more
200 easily controlled than a multi-jointed limb. Functionally, of course,
201 there is powerful visual feedback: If the eyes drift from the target
202 of gaze, the error is reported as slip of the visual image over the
203 retina. Retinal slip drives “on-line” corrective velocity adjustment
204 during smooth eye movement. Because saccades are of short du-
205 ration, errors are corrected “off-line” with a secondary saccade.
206 Consistent saccadic under- or overshooting errors lead to long-term
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207 changes in the feedforward controller, an example of adaptive
208 control.

209 Adaptive Control and Internal Models

210 Adaptive Control

211 Adaptive control (see ADAPTIVE CONTROL) relies on monitoring
212 performance over a longer time scale than that used by negative
213 feedback control to generate a measure of average performance
214 rather than of moment-to-moment error. The adaptive controller is
215 then used to adjust the motor responses, for example, by modulat-
216 ing the feedforward controller as indicated in Figure 1A2 or by
217 modulating the open-loop gain of a feedback controller. The ad-
218 vantage of adaptive control is that it can compensate for gradual
219 changes in the motor performance of the controlled object. Con-
220 trollers can also be designed to track predictable changes in the
221 reference value. Because the performance of physiological systems
222 (as well as the goals of behavior) changes over time, all biological
223 control systems are to some extent adaptive through mechanisms
224 as diverse as evolutionary change, growth, or learning and memory.
225 In control of eye movements, there is good evidence that the cer-
226 ebellum is involved in adaptation (Robinson and Fuchs, 2001).

227 Internal Models

228 Two forms of internal model can be distinguished. An ideal feed-
229 forward controller will ensure that the plant output (the controlled
230 variable) is always identical to the reference value. Thus it inputs
231 the reference value (and often also the state signals, Figure 1A1)
232 and outputs a motor command; the motor command shifts the plant
233 into a new state, which should equal the reference value. Thus one
234 can describe the ideal feedforward controller as an inverse of the
235 plant: The plant translates commands into states whereas the in-
236 verse controller translates desired states into commands. If the
237 transfer function of the plant is represented as P, its inverse is P�1,
238 and the transfer function of the complete system (from reference
239 value to controlled variable) is P • P�1 � 1. Again, this implies
240 that the perfect system has a gain of unity. Inverse modeling is
241 covered in more detail in Jordan (1994).
242 The alternative type of internal model is known as a forward
243 model of the plant (Figure 1B2). Its inputs are a copy of the motor
244 command being sent to the plant and also the current feedback of
245 the plant state, and its output is an estimate of the next state of the
246 plant or of the controlled variables. This estimate is available to
247 the feedback controller more rapidly than actual feedback. Thus,
248 the external feedback loop can be replaced by an internal loop,
249 which avoids the feedback delays mentioned above. A negative
250 feedback loop with negligible delay and a high open-loop gain will
251 rapidly and accurately drive its plant in a direction to minimize the
252 comparator error. Thus, a fast internal loop including a forward
253 model is functionally equivalent to an inverse dynamic model. Of
254 course, viewed from outside the loop, it functions as a feedforward
255 controller: It disregards the actual feedback and hence is no longer
256 error correcting. The oculomotor feedforward controller may be an
257 inverse model like that shown in Figure 1A2 (Krauzlis and Lisber-
258 ger, 1989); an alternative proposal suggests an internal forward
259 model as in Figure 1B2 (Robinson, 1975).
260 Schemes that combine feedback with feedforward control (Hoff
261 and Arbib, 1992; Miall et al., 1993) depend on estimation of the
262 expected feedback signal, including its delay. Recent theories have
263 proposed combined forward and inverse models, working in pairs
264 for system identification, control, and adaptation (Wolpert, Miall,
265 and Kawamoto, 1998).

266 Physiological Internal Models

267 Visual guidance of the human arm is based on sensory information
268 from the visual system with processing delays of up to 100 ms.
269 Motor commands issued by the CNS may take 50 ms to initiate
270 muscle contraction, and these changes are signaled by vision and
271 by proprioceptors with delays of perhaps 50 to 100 ms. So feedback
272 signals from the environment will lag significantly behind the issue
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273 of each motor command. Despite this, we control our limbs skill-
274 fully and accurately with movement durations of well under half a
275 second. Thus, our motor control cannot be based entirely on feed-
276 back signals; we also employ feedforward control. It is likely (al-
277 though not yet certain) that control is based on internal represen-
278 tations of the motor system—internal models (Miall and Wolpert,
279 1996).
280 Can we identify these internal models in the brain? The cere-
281 bellum is a strong contender for internal model representations (Ito,
282 1984; Wolpert et al., 1998). The model should receive as inputs
283 either the motor goal or an efferent copy of the motor command,
284 and also receive proprioceptive information about the current state
285 of the body. There must be a mechanism to allow the model to
286 adapt to predict accurately the behavior of the limb, i.e., a neural
287 learning mechanism. And the output of the model must form either
288 the motor command or a sensory prediction of the action outcome.
289 The cerebellum can satisfy all these constraints, but this alone is
290 not proof. Other possible sites are the motor cortex, parietal cortex,
291 and the spinal cord, although a spinal representation would prob-
292 ably be more closely related to individual muscles than a model of
293 the whole arm.
294 There are strong connections from the motor cortical areas and
295 posterior parietal cortex to the lateral hemispheres of the cerebel-
296 lum, and from there, ascending paths back to premotor and motor
297 cortices or descending to brainstem nuclei. Spino-cerebellar tracts
298 provide a large array of proprioceptive signals, updating the cere-
299 bellum on the current state of the limb. For adaptation, we know
300 that coincident activity in climbing fiber and parallel fiber inputs
301 to Purkinje cells results in a sustained change in the strength of the
302 parallel fiber:Purkinje cell synapse (see LTD MECHANISMS OF

303 CEREBELLUM). Some researchers therefore suspect that the cere-
304 bellum acts as an adaptive inverse model on the feedforward con-
305 trol pathway (Figure 1A2; Ito, 1984; Kawato and Gomi, 1992). Ito
306 viewed the cerebellum as an adaptive side path to the descending
307 systems, modulating the feedforward commands issued by cerebral
308 control centers. Kawato views it as an alternative to these cerebral
309 systems, replacing their control function. The alternative forward
310 model-based scheme (Figure 1B2) is also valid; hence the cerebel-
311 lum may represent an adaptive forward model on a feedback path-
312 way (Miall et al., 1993). This Smith predictor theory places the
313 forward model within the closed cerebro-cerebellar loop as the con-
314 troller and incorporates feedback via an adaptive delay module.
315 Each module is learned independently, with different time courses.
316 It is difficult to distinguish between inverse dynamics models (Fig-
317 ure 1A2) and internal feedback loops containing forward models
318 (Figure 1B2) unless one can get access to their internal structure.
319 One might block the internal feedback loop needed for a forward
320 model or decoding the input and output signals. However, many
321 recent psychophysical, electrophysiological and functional imaging
322 experiments have generated strong evidence of the use of internal
323 models for motor control, for state estimation, and for planning and
324 interpretation of actions.

325 Roadmap: Mammalian Motor Control; Robotics and Control Theory
326 Related Reading: Action Monitoring and Forward Control of Movements;
327 Cerebellum and Motor Control; Optimization Principles in Motor Con-
328 trol; Sensorimotor Learning
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